

Document: ETG.1500 D (R) 1.0.2

Nomenclature: ETG-Number Type State Version

ETG.1500 D (Directive) R (Release) 1.0.2

Created by: Contact: Filename: Date: ETG info@ethercat.org ETG1500_D_MasterClasses.docx 19.05.16

LEGAL NOTICE

Trademarks and Patents

EtherCAT[®] is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Disclaimer

The documentation has been prepared with care. The technology described is, however, constantly under development. For that reason the documentation is not in every case checked for consistency with performance data, standards or other characteristics. In the event that it contains technical or editorial errors, we retain the right to make alterations at any time and without warning. No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Copyright

© EtherCAT Technology Group 10/2015.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

DOCUMENT HISTORY

Version	Comment
1.0.0	First outline
1.0.1	Removed ETG.1400 reference and update ETG.8000 Name
1.0.2	Replaced ETG.1400 by ETG.8000 throughout the document

CONTENTS

1	Scope			2
2	References	s		3
3	Terms, Def	initions a	and Word Usage	4
	3.1	Terms	and Definitions	4
	3.2	Word u	ısage: shall, should, may, can	4
4	Master Cla	sses		5
	4.1	Introdu	ction	5
	4.2	Master	Class A	5
	4.3	Master	Class B	5
	4.4	Feature	e Packs	6
	4.5	Validity	of Master Classes and Feature Packs	6
5	Master Cla	sses Rec	quirement Specification	7
	5.1	Versior	n history Master Classes specification	7
	5.2	Overvie	ew	7
	5.3	Basic F	Functions	9
		5.3.1	Service Commands	9
		5.3.2	IRQ Field in datagram	9
		5.3.3	Slaves with Device Emulation	10
		5.3.4	EtherCAT State Machine (ESM)	10
		5.3.5	Error Handling	10
		5.3.6	VLAN	10
		5.3.7	Ethernet Frame Types	11
	5.4	Proces	s Data Exchange	11
		5.4.1	Cyclic PDO	11
		5.4.2	Multiple Tasks	11
		5.4.3	Frame repetition	11
	5.5	Networ	rk Configuration	12
		5.5.1	Getting Network Configuration	12
		5.5.2	Compare network configuration during boot-up	12
		5.5.3	Explicit Station Identification	12
		5.5.4	Station Alias Addressing	12
		5.5.5	Access to EEPROM	13
	5.6	Mailbo	x Support	13
		5.6.1	Support Mailbox	13
		5.6.2	Mailbox Resilient Layer	13
		5.6.3	Simultaneous Mailbox protocol transfer to one device	13
		5.6.4	Mailbox polling	14
	5.7	CAN a	pplication layer over EtherCAT (CoE)	14
		5.7.1	SDO Up-/Download	14
		5.7.2	Segmented Transfer	14
		5.7.3	Complete Access	14
		5.7.4	SDO Information Service	14
		5.7.5	Emergency Message	15
		5.7.6	PDO transmission with CoE	15
	5.8	Ethern	et over EtherCAT (EoE)	15
		5.8.1	EoE Protocol	15
		5.8.2	Virtual Switch	15

6

		5.8.3	EoE Endpoint to Operating Systems	15
	5.9	File Acc	ess over EtherCAT (FoE)	16
		5.9.1	FoE Protocol	16
		5.9.2	Boot State	16
	5.10	Servo dr	rive profile over EtherCAT (SoE)	16
		5.10.1	SoE Services	16
	5.11	ADS ove	er EtherCAT (AoE)	16
		5.11.1	AoE Protocol	16
	5.12	Vendor-	specific over EtherCAT (VoE)	17
		5.12.1	VoE Protocol	17
	5.13	Synchro	nization with Distributed Clocks (DC)	17
		5.13.1	DC support	17
		5.13.2	Continuous Propagation delay measurement	17
		5.13.3	Sync window monitoring	18
	5.14	Slave-to	-Slave Communication	18
	5.15	Master i	nformation	18
		5.15.1	Master Object Dictionary	18
Featu	ire Pac	ks		19
	6.1	FP Cabl	e Redundancy	19
		6.1.1	Version history FP Cable Redundancy	19
		6.1.2	FP Cable Redundancy description	19
		6.1.3	Basic Functions	20
		6.1.4	Diagnosis Functions	20
		6.1.5	Redundancy with Hot Connect	20
		6.1.6	Redundancy with DC	21
	6.2	FP Motio	on Control	21
		6.2.1	Version history FP Motion Control	21
		6.2.2	FP Motion Control description	21
		6.2.3	Drive Profile CiA402	21
		6.2.4	Drive Profile SERCOS	21
		6.2.5	Synchronization with DC	22
	6.3	FP Hot (Connect	22
		6.3.1	Version history FP Hot Connect	22
		6.3.2	FP Hot Connect description	22
	6.4	FP Exte	rnal Synchronization	22
		6.4.1	Version history FP External Synchronization	22
		6.4.2	FP External Synchronization description	22
	6.5	FP Ethe	rCAT Automation Protocol	22
		6.5.1	Version history FP EtherCAT Automation Protocol	22
		6.5.2	FP EtherCAT Automation Protocol description	22
	6.6	FP Devi	ce Replacement	23
		6.6.1	Version history FP Device Replacement	23
		6.6.2	FP Device Replacement description	23
	6.7	FP Mailt	box Gateway	23
		6.7.1	Version history FP Mailbox Gateway	23
		6.7.2	FP Mailbox Gateway description	23

TABLES

Table 1: Master classes requirement specification	7
Table 2: FP Cable Redundancy specification	
Table 3: FP Motion control specification	

FIGURES

Figure 1: EtherCAT Master and Configuration Tool Structure	. 5
Figure 2: The cable redundancy principle	19

ABBREVIATIONS

μC	Microcontroller
Ċ	Conditional
CMD	Command
CoE	CANopen over EtherCAT
DC	Distributed Clock
DPRAM	
	Dual-Ported RAM
ENI	EtherCAT Network Information (EtherCAT XML Master Configuration)
EoE	Ethernet over EtherCAT
ESC	EtherCAT Slave Controller
ESI	EtherCAT Slave Information (EtherCAT Devices Description)
ESM	EtherCAT State Machine
ETG	EtherCAT Technology Group
FMMU	Fieldbus Memory Management Unit
FoE	File Access over EtherCAT
FPMR	Configured Address Physical Read Multiple Write
FPRD	Configured Address Physical Read
FPRW	Configured Address Physical ReadWrite
FPWR	Configured Address Physical Write
I/O	Input/Output
IDN	Identification Number (Servo Profile Identifier)
IEC	International Electrotechnical Commission
INT	Integer
IRQ	Interrupt Request
LRD	Logical Read
LRW	Logical ReadWrite
LSB	Least Significant Bit
LWR	Logical Write
M	Mandatory
MAC	Media Access Controller
MAC	(PHY) Management Interface
MII	Media Independent Interface
MSB	Most Significant Bit
NIC	Network Interface Card
NOP	No Operation
ns	nanoseconds (10 ⁻⁹ seconds)
0	Optional
OD	Object Dictionary
OS	Oversampling
PDO	Process Data Object
DLPDU	Data-Link Layer Process Data Unit
PreOp	Pre-Operational
RD	Read
SDO	Service Data Object
SII	Slave Information Interface (EEPROM content)
SM	SyncManager
SoE	Servo Profile over EtherCAT
SOF	Start of Frame
SPI	Serial Peripheral Interface
SU	Sync Unit
WD	Watchdog
WKC	Working Counter
WR	Write
XML	eXtensible Markup Language

GLOSSARY

configurator configuration tool or configuration logic

1 Scope

End users and/ or System integrators expect a defined minimum functionality and interoperability when selecting an EtherCAT Master device. But not every master has to support all features of the EtherCAT Technology.

This specification defines Master Classes with a well-defined set of Master functionalities. In order to keep things simple only 2 Master Classes are defined:

- Class A: Standard EtherCAT Master Device
- Class B: Minimum EtherCAT Master Device

The principle idea is that each implementation should aim to meet Class A requirements. Only if resources prohibit, e.g. on embedded systems, at least Class B shall be met.

Additional Functionality, which can be considered to be optional, is described by Feature Packs. The Feature Pack describes all mandatory master functionality for a specific feature, e.g. Redundancy.

2 References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ETG Standards

- [1] ETG.1000.2: Physical Layer service definition and protocol specification
- [2] ETG.1000.3: Data Link Layer service definition
- [3] ETG.1000.4: Data Link Layer protocol specification
- [4] ETG.1000.5: Application Layer service definition
- [5] ETG.1000.6: Application Layer protocol specification
- [6] ETG.1005: EtherCAT Automation Protocol
- [7] ETG.1020: EtherCAT Guidelines and Protocol Enhancements
- [8] ETG.2000: EtherCAT Slave Information
- [9] ETG.2100: EtherCAT Network Information
- [10] ETG.5001: EtherCAT Modular Device Profiles
- [11] ETG.6010: EtherCAT Implementation Guideline for CiA402 Drive Profile
- [12] ETG.8000: EtherCAT Knowledge Base

Other References

- [13] IEC 61158-x-12 (all parts for type 12): Industrial communication networks Fieldbus specifications
- [14] IEC 61784-2: Industrial communication networks Profiles Part 2: Additional fieldbus profiles for real-time networks based on ISO/IEC 8802-3
- [15] IEC 61800-7: Adjustable speed electrical power drives systems Part 7: Generic interface and use of profiles for power drive systems

3 Terms, Definitions and Word Usage

3.1 Terms and Definitions

The terms and definitions of ETG.1000 series shall be fully valid, unless otherwise stated.

3.2 Word usage: shall, should, may, can

The word *shall* is used to indicate mandatory requirements to be followed in order to conform to the directive and from which no deviation is permitted (*shall* equals *is required to*).

The word *should* is used to indicate that among several possibilities one is recommended as particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred but not necessarily required; or that (in the negative form) a certain course of action is deprecated but not prohibited (*should* equals *is recommended that*).

The support of this possibility increases performance of the system or broadens the support of devices or functionalities which are used in a relatively small number of implementations.

The word *may* is used to indicate a course of action permissible within the limits of the standard (*may* equals *is permitted to*).

The support of this possibility is used for optimization and mainly implemented for concrete use cases only.

The word *can* is used for statements of possibility and capability, whether material, physical, or causal (*can* equals *is able to*).

4 Master Classes

4.1 Introduction

The main tasks of an EtherCAT master are the network initialization and the handling of the state machines of all devices, the process data communication and providing acyclic access for parameter data exchange between master application and slave.

However, the master itself does not collect the information for the list of initialization and cyclic commands. This is done by a network configuration logic. In many cases this is an EtherCAT network configuration software.

The configuration logic collects the necessary information from the ESI or the SII, ESC registers and object dictionary or IDN list and generates the EtherCAT Network Information (ENI). This is provided to the EtherCAT master.

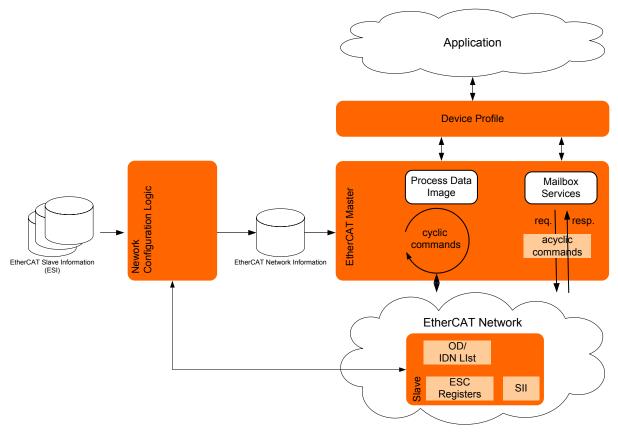


Figure 1: EtherCAT Master and Configuration Tool Structure

Configuration Functionality: Either Configuration Tool or Configuration functionality in Master In the following this is referred to as configuration tool. This represents both versions.

Master application may be a PLC or Motion Control function, or online diagnosis application.

4.2 Master Class A

A Master Class A device shall support all functions that are described by the ETG specification ETG.1000 series as well as many functions of the ETG.1020. Additional functions are listed in the requirement specification, see Table 1.

Master devices should support the Master Class A requirements.

4.3 Master Class B

The Master Class B has reduced functionality compared to Class A. The main functions that are needed to run most of the EtherCAT devices (e.g. support of CoE, cyclic process data exchange) are required for this master.

Only master devices those are not able to fulfill Master Class A requirements shall fulfill Master Class B requirements.

4.4 Feature Packs

Feature Packs (FP) defines sets of optional functionality. If a FP is supported than all functions of the listed requirements shall be fulfilled.

4.5 Validity of Master Classes and Feature Packs

The definition of Master Classes and Feature Packs is an ongoing process due to enhancements of the technology and additional features needed to satisfy upcoming requirements from customers and applications.

The Master Classes are meant to take those enhancements into account to the end-user's benefit. Therefore, the range of functionalities of the basic feature set and each individual Feature Pack is identified by a version number.

The Master vendor must not classify his Master Classes implementation (basic feature set as well as each Feature Packs) without the corresponding version numbers.

5 Master Classes Requirement Specification

5.1 Version history Master Classes specification

Version history	Version history Master Class A	
Version	Comment	
1.0.0	First release	

Version history Master Class B

Version	Comment
1.0.0	First release

5.2 Overview

Table 1 lists features for the Master Classes and the assignment to Master Class A and Master Class B. The following chapters give a detailed specification of each function.

Feature name	Short description	Master Class A	Master Class B	Feature ID	see
Basic Features		•	•		
Service Commands	Support of all commands	shall if ENI import support	shall if ENI import support	101	5.3.1
IRQ field in datagram	Use IRQ information from Slave in datagram header	should	should	102	5.3.2
Slaves with Device Emulation	Support Slaves with and without application controller	shall	shall	103	5.3.3
EtherCAT State Machine	Support of ESM special behaviour	shall	shall	104	5.3.4
Error Handling	Checking of network or slave errors, e.g. Working Counter	shall	shall	105	5.3.5
VLAN	Support VLAN Tagging	may	may	106	5.3.6
EtherCAT Frame Types	Support EtherCAT Frames	shall	shall	107	5.3.7
UDP Frame Types	Support UDP Frames	may	may	108	5.3.7
Process Data Excha	ange				
Cyclic PDO	Cyclic process data exchange	shall	shall	201	5.4.1
Multiple Tasks	Different cycle tasks Multiple update rates for PDO	may	may	202	5.4.2
Frame repetition	Send cyclic frames multiple times to increase immunity	may	may	203	5.4.3
Network Configurat	ion				
Online scanning	Network configuration functionality included in EtherCAT Master	at least one of them	at least one of them	301	5.5.1
Reading ENI	Network Configuration taken from ENI file				5.5.1
Compare Network configuration	Compare configured and existing network configuration during boot-up	shall	shall	302	5.5.2
Explicit Device Identification	Identification used for Hot Connect and prevention against cable swapping	should	should	303	5.5.3
Station Alias Addressing	Support configured station alias in slave, i.e. enable 2nd Address and use it	may	may	304	5.5.4

Table 1: Master classes requirement specification

Access to		Class A	Class B	ID	see
Access to EEPROM	Support routines to access EEPROM via ESC register	Read shall Write may	Read shall Write may	305	5.5.5
Mailbox Support		•	•	•	
Support Mailbox	Main functionality for mailbox transfer	shall	shall	401	5.6.1
Mailbox Resilient Layer	Support underlying resilient layer	shall	shall	402	5.6.2
Multiple Mailbox channels		may	may	403	5.6.3
Mailbox polling	Polling Mailbox state in slaves	shall	shall	404	5.6.4
CAN application lay	er over EtherCAT (CoE)				
SDO Up/Download	Normal and expedited transfer	shall	shall	501	5.7.1
Segmented Transfer	Segmented transfer	shall	should	502	5.7.2
Complete Access	Transfer the entire object (with all sub-indices) at once	shall	should shall if ENI Import supported	503	5.7.3
SDO Info service	Services to read object dictionary	shall	should	504	5.7.4
Emergency Message	Receive Emergency messages	shall	shall	505	5.7.5
PDO in CoE	PDO services transmitted via CoE	may	may	506	5.7.6
EoE					
EoE protocol	Services for tunneling Ethernet frames. includes all specified EoE services	shall	shall if EoE support	601	5.8.1
Virtual Switch	Virtual Switch functionality	shall	shall if EoE support	602	5.8.2
EoE Endpoint to Operation Systems	Interface to the Operation System on top of the EoE layer	should	should if EoE support	603	5.8.3
FoE					
FoE Protocol	Support FoE Protocol	shall	shall if FoE support	701	5.9.1
Firmware Up- /Download	Password, FileName should be given by the application	shall	should	702	5.9.1
Boot State	Support Boot-State for Firmware Up/Download	shall	shall if FW UP/ Download	703	5.9.2
SoE					
SoE Services	Support SoE Services	shall	should if SoE support	801	5.10.1
AoE					
AoE Protocol	Support AoE Protocol	should	should	901	5.11.1
VoE					
VoE Protocol	External Connectivity supported	may	may	1001	5.12.1
Synchronization with	th Distributed Clock (DC)		-		
DC support	Support of Distributed Clock	shall	shall if DC support	1101	5.13.1

Feature name	Short description	Master Class A	Master Class B	Feature ID	see
Continuous Propagation Delay compensation	Continuous Calculation of the propagation delay	should	should	1102	5.13.2
Sync window monitoring	Continuous monitoring of the Synchronization difference in the slaves	should	should	1103	5.13.3
Slave-to-Slave Com	munication				
via Master	Information is given in ENI file or can be part of any other network configuration Copying of the data can be handled by master stack or master's application	shall	shall	1201	5.14
Master information					
Master Object Dictionary	Support of Master Object Dictionary (ETG.5001 MDP sub profile 1100)	should	may	1301	5.15.1

5.3 Basic Functions

5.3.1 Service Commands

Description

The EtherCAT datagrams (DLPDU) uses several service commands to address data in the network.

Reference

ETG.1000.3 and ETG.1000.4

Note

Some slaves do not support LRW commands. The configurator has to take care if the flag UseLrdLwr is set in the ESI file / SII.

Implementation Aspect

The network configuration is done by the configuration tool (even a separated configuration tool or integrated in the master functionality). This configuration tool may use several commands to start-up the network and to cyclic update the process image.

If the Master supports internal configuration capability, it may reduce the variety of commands

5.3.2 IRQ Field in datagram

Description

The EtherCAT datagrams (DLPDU) contains an IRQ field. The Master may use the IRQ field to get information from the slaves.

Reference

ETG.1000.3 and ETG.1000.4

Note

It has to be considered, that the IRQ bits are ORed by all slaves and that the bits are set in all datagrams of a frame.

Use Case

Detect a change of the DL Status event, e.g. when a device is connected to or disconnected from the network; especially for hot connect applications

5.3.3 Slaves with Device Emulation

Description

There are slaves which confirm the AL Management services with (device emulation = true) or without (device emulation = false) any reaction within the local application.

Reference

ETG.8000 topic Device Emulation ETG.1000.5 clause Simple Slave Device; clause Complex Slave Device

Implementation Aspect

The master should not set the Error Indication Acknowledge bit for slaves with device emulation = true at all, because setting this bit would result in setting the Error Indication bit – although no error occurred.

5.3.4 EtherCAT State Machine (ESM)

Description

The EtherCAT State Machine defines the network behaviour of the master and of the slaves.

Reference

ETG.1000.5 and ETG.1000.6

ETG.1020, SII Specification

Implementation Aspect

The Timeout values for the ESM transitions from the ESI / SII shall be used. If no timeout values are available the default timeouts defined in ETG.1020 shall be used.

If the *OpOnly* Flag is set in the ESI file / SII the Master shall disable the SyncManager of all outputs if not in state Operational (this can be part of the network configuration Init Commands).

5.3.5 Error Handling

Description

The Error Handling defines a unique behaviour of EtherCAT devices (Masters and Slaves) in cases of communication problems.

Reference

ETG.1020 → Error Handling

Implementation Aspect

Evaluation of the PDO Parameter, like PDO Toggle or PDO state, can be done in the application.

Master shall support an interface to the application which provides access to error and diagnosis information (e.g. error register, Diagnosis object).

5.3.6 VLAN

Description

The VLAN Tag can be used for classification of a frame.

Reference

ETG.1000.4 → DLPDU structure

5.3.7 Ethernet Frame Types

Description

The EtherCAT datagrams are transferred inside an Ethernet frames with EtherType = 0x88A4 and with EtherCAT Header \rightarrow Type = 1.

The EtherCAT Frame may also be transferred inside a UDP datagram (EtherType = 0x0800, UDP-Port = 0x88A4).

Reference

ETG.1000.3 and ETG.1000.4

Note

When using UDP datagrams system performance obviously depends on the real-time characteristics of the control and its Ethernet protocol implementation.

5.4 Process Data Exchange

5.4.1 Cyclic PDO

Description

Cyclic frames to update the process image are defined in the network configuration.

Reference

ETG.1000.3 and ETG.1000.4

Implementation Aspect

The trigger for sending the cyclic frames can be done by the Master or by the user (application) of the Master.

5.4.2 Multiple Tasks

Description

A master may support different Cycle Tasks (Task ID) and sends different Frames or Frame sets with different cycle times.

The ENI schema (ETG.2100) defines different Task IDs to distinguish these different Frames or Frame sets.

Reference

ETG.2100

Implementation Aspect

Some Slaves (drives, oversampling) need fix cycle time. The Master shall give a message, if a slave type is not supported

5.4.3 Frame repetition

Description

For the improvement of robustness the cyclic frames may be sent multiple times within one cycle.

Only Slaves supporting the frame repetition shall be charged with multiple frames per cycle. This information is given in the ESI / SII (Flag *FrameRepeatSupport*), ETG.2000

Reference

ETG.2000

Implementation Aspect

At least three identical frames per cycle should be supported. This is part of the network configuration, ETG.2100.

5.5 Network Configuration

5.5.1 Getting Network Configuration

Description

The Network Configuration shall be build by one of the following ways:

- Online configuration by scanning the Network and read SII content The content of the Slave Information Interface (SII) is described in ETG.1000.6 and enhanced in the ETG.1020
- Import ENI File
 With the import of the ENI file, defined in ETG.2100 the master can boot-up and run a network. The ENI configuration comes from a configuration tool. The contained Validate information in the ENI file for the Init-Commands shall be processed

Reference

ETG.1000.6 and ETG.1020

ETG.2100

5.5.2 Compare network configuration during boot-up

Description

During boot-up the master shall compare the configured network configuration with the existing network configuration according to the configured behaviour.

The network configuration can contain the comparison of

- VendorID, ProductCode, RevisionNo, SerialNo in the SII of the devices
- Identification information (IdentificationAdo)
- Topology information

Reference

ETG.2100

Implementation Aspect

The indispensable compare values shall be part of the Network Configuration coming from the ENI, ETG.2100, or the online configuration

5.5.3 Explicit Station Identification

Description

The use of EtherCAT Device identification is to identify a device explicitly. This can be used for Hot Connect applications and prevention against cable swapping.

Reference

ETG.1020

5.5.4 Station Alias Addressing

Description

A slave can be addressed by a fixed address stored in SII; this address is called Configured Station Alias. The Configured Station Alias address is loaded from SII to Register 0x0012 (Configured Station

Alias register) during Power-on of the device. The Configured Station Alias has to be enabled by the master.

Reference

ETG.1000.4

Implementation Aspect

The use of this alias is activated by Register DL Control Bit 24 (0x0100.24/0x0103.0). If the bit is set in DL Control Configured Station Alias address can be used for all configured address command types (FPRD, FPWR, FPRW, FPMW).

5.5.5 Access to EEPROM

Description

The Master shall support read access to the EEPROM, which contains the SII. This is done via the relevant Registers of the slave's ESC.

The write access to the EEPROM can be used for configuration issues.

Reference

ETG.1000.4

Note

This includes a state machine for EEPROM access

5.6 Mailbox Support

5.6.1 Support Mailbox

Description

Mailbox transfer is a non real-time service used to access application configuration data (CoE, SoE), transfer files (FoE) or transfer standard IT data (EoE).

Reference

ETG.1000.3, ETG.1000.4 and ETG.1000.6

5.6.2 Mailbox Resilient Layer

Description

The Resilient Mailbox State machine (RMSM) is responsible for recover lost frames with mailbox information. It is independent of the upper Mailbox protocol.

Reference

ETG.1000.4

5.6.3 Simultaneous Mailbox protocol transfer to one device

Description

A Master may support the simultaneous transfer of two or more mailbox communication to the same device

Reference

--

Implementation Aspect

The slave must support multiple mailbox protocols in parallel (which is not usual).

5.6.4 Mailbox polling

Description

The master shall evaluate the Input- Mailbox for new data.

Reference

ETG.2100

Details

Polling of Input Mailbox:

If the element MailboxRecvInfoType:PollTime is given in the ENI (ETG.2100) the Input Mailbox shall be read within the configured poll time by auto increment or fixed addressing commands.

Polling of Input-Mailbox-Status-Bit

If the element MailboxRecvInfoType:StatusBitAddr is given in the ENI (ETG.2100) an FMMU shall be configured to map the status flag of the SyncManager (0x0805.0 *y; y = number of SyncManager starting with 0) to the cyclic data.

If the status bit indicates a written Input mailbox the master shall read the mailbox service data.

Note

To support polling of input-Mailbox-Status-Bit the slave needs an additional FMMU. This is indicated in the ESI *DeviceType:FMMU* = *MBoxState* (see ETG.2000).

5.7 CAN application layer over EtherCAT (CoE)

The CAN application layer over EtherCAT (CoE) protocol shall be supported by every master.

5.7.1 SDO Up-/Download

Description

The SDO Up-/Download protocol and services are used for access to the object dictionary. The expedited and normal SDO Up-/Download services shall be supported by every master

Reference

ETG.1000.5 and ETG.1000.6

5.7.2 Segmented Transfer

Description

The SDO segmented transfer is used, if the service data exceeds the mailbox data length.

Reference

ETG.1000.5 and ETG.1000.6

5.7.3 Complete Access

Description

The SDO complete access service allows one to transfer the entire object at once. The data of all subindices is transferred subsequently.

Reference

ETG.1000.5 and ETG.1000.6

5.7.4 SDO Information Service

Description

With the SDO information services the object dictionary of a server can be read by a client.

Reference

ETG.1000.5 and ETG.1000.6

5.7.5 Emergency Message

Description

Emergency messages are triggered by the occurrence of a device internal error situation.

Reference

ETG.1000.5 and ETG.1000.6

Implementation Aspect

The evaluation of the Emergency messages does not have to be done by the master. Usually it is done by the masters' application.

5.7.6 PDO transmission with CoE

Description

With the PDO services process data objects can be transmitted via the mailbox Interface acyclically from the client to the server (RxPDO) or from the server to the client (TxPDO).

Reference

ETG.1000.5 and ETG.1000.6

Use Case

No relevant use case known.

5.8 Ethernet over EtherCAT (EoE)

5.8.1 EoE Protocol

Description

Ethernet over EtherCAT (EoE) protocol is used to tunnel standard Ethernet frames through the EtherCAT network.

Reference

ETG.1000.5 and ETG.1000.6

ETG.1020

5.8.2 Virtual Switch

Description

The software-integrated Ethernet switch functionality is responsible for the routing of the individual Ethernet frames from and to the devices and the IP stack of the host operating system. The switch functionality is identical with that of a standard layer 2 Ethernet switch and responds to the Ethernet addresses used irrespective of the protocol.

Reference

ETG.1000.5

5.8.3 EoE Endpoint to Operating Systems

Description

An Interface to the Operation System on top of the EoE layer. The EtherCAT master stack, in this regard functioning as a standard Ethernet network interface (compare with NIC).

5.9 File Access over EtherCAT (FoE)

5.9.1 FoE Protocol

Description

The File access over EtherCAT (FoE) mailbox command specifies a standard way to download a firmware or any other files from a client to a server or to upload a firmware or any other files from a server to a client.

Reference

ETG.1000.5 and ETG.1000.6

Implementation Aspect

The password and file name needed for the Up/Download should be given by the master's application therefore an interface between Master and application is required.

5.9.2 Boot State

Description

For the download of firmware the BOOT state in the EtherCAT state machine is defined.

Reference

ETG.1000.5 and ETG.1000.6

Note

A special Mailbox size can be supported by the slave for the Boot state (ETG.2000). This is part of the Init-Commands in the network configuration.

5.10 Servo drive profile over EtherCAT (SoE)

5.10.1 SoE Services

Description

Servo drive profile over EtherCAT (SoE) communication *services* are used to access the IDNs of a SoE slave.

The SoE drive profile is part of an extra master application, not of the master itself.

Reference

IEC 61800-7-304

5.11 ADS over EtherCAT (AoE)

5.11.1 AoE Protocol

Description

The AoE protocol is used to access the Object dictionary of slave devices of underlying fieldbuses, e.g. for a CANopen Slave connected to a EtherCAT-CANopen gateway device. It is also used in relation with the EtherCAT Automation Protocol (EAP).

Reference

ETG.1020 → AoE

5.12 Vendor-specific over EtherCAT (VoE)

5.12.1 VoE Protocol

Description

By supporting the Mailbox protocol, Vendor-specific protocol over EtherCAT (VoE) date can be transferred. No additional services are required for the master.

5.13 Synchronization with Distributed Clocks (DC)

5.13.1 DC support

Description

"DC-slave" is defined as slave which shall be synchronized by means of distributed clocks.

During network start-up several steps have to be performed to set-up a consistent time base in all DC-slaves:

- Initial propagation delay measurement (ETG.8000)
- Offset compensation (ETG.8000)
- Set start time (ETG.8000)
- After network start-up: continuous drift compensation (ETG.8000)
- The Master must synchronize itself on the reference clock (ETG.1020)

Initial propagation delay measurement and Offset compensation commands are not part of the Network configuration. Cyclic ARMW commands for drift compensation are part of the network configuration.

Reference

ETG.1000.3 and ETG.1000.4

ETG.1020 → Synchronization

ETG.8000 → Distributed Clocks

Implementation Aspect

To achieve best synchronization results the first DC-slave after the master should be the reference clock.

Note

The ETG.8000 gives an example for the clock synchronization initialization, containing propagation delay measurement, Offset compensation to the Reference clock and drift compensation

5.13.2 Continuous Propagation delay measurement

Description

Continuous measurement of Propagation Delay enhances the long time accuracy of synchronization.

Reference

Implementation Aspect

Some configuration tools add a NOP command to register 0x0900 DC Receive Time Port 0 to the cyclic commands. This NOP command is meant to be replaced from time to time (several seconds) by a BWR command to start the continuous propagation measurement.

5.13.3 Sync window monitoring

Description

To monitor the time deviation of the DC-slaves from the Reference clock the master reads out the Register 0x092C System Time Difference.

Reference

Implementation Aspect

This can be done by a BRD datagram in each cycle. The ORed result can be compared to a limit value.

5.14 Slave-to-Slave Communication

Description

Slave-to-Slave communication via the Master is the generic approach independent of the topology. The data of the server are copied to the client by the master stack so that the maximum transfer time is two communication cycles.

Reference

Implementation Aspect

The copy information is part of the ENI file (ETG.2100) or can be part of any other network configuration.

Note

In addition to the mapping of slave-to-slave data in the master stack a master may provide an API to configure the mapping of slave-to-slave data which is then done by the master application.

Slave-to-Slave communication via LRW commands and corresponding configuration of the devices is restricted to a fixed topology. Another drawback of this solution is that the Working Counter cannot be checked by the receiving slave. Therefore, it cannot verify if the received data is valid

Use Case

Slave-to-Slave communication is necessary to support Safety-over-EtherCAT Master and Slave devices within the EtherCAT segment

5.15 Master information

5.15.1 Master Object Dictionary

Description

The Master Object dictionary contains information about the network configuration and EtherCAT slave diagnosis data.

Reference

ETG.5001 MDP sub profile 1100

Note

As an interface to access the Master Object Dictionary the master should support AoE (ETG.1020).

6 Feature Packs

6.1 FP Cable Redundancy

6.1.1 Version history FP Cable Redundancy

Version history

Version	Comment
1.0.0	First release

6.1.2 FP Cable Redundancy description

FP Cable Redundancy maintains the communication in case of a cable break or node failure in the EtherCAT system. A ring topology, which normally is operated in both directions, is therefore used. Both branches can nevertheless still be reached if the ring is interrupted at some point.

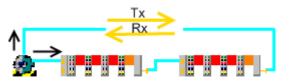


Figure 2: The cable redundancy principle

A second network port is used for ring closure at the EtherCAT master control system. Both cyclic and acyclic frames are sent simultaneously through both ports, and are transported through the system.

In the absence of any fault, all the EtherCAT slaves are reached in the forward direction (so called processing direction) from the primary port. This means that they are processed, since the EtherCAT Slave Controller (ESC) is only passed through in the forward sense.

When there is no fault, all the EtherCAT slaves are reached from the secondary port in the reverse direction - the data in the "redundancy" frame is therefore not changed.

In each case, the EtherCAT frames arrive, possibly modified, at the other port, and are checked by the EtherCAT master. In case of a cable break, both frames are processed - each one on the respective side of the failure. Therefore both frames contain a part of the input data. The master has to combine the data of both frames, and gets one frame with all the input data. The working counters from both frames are added to check for its validity. It is unimportant whether an EtherCAT slave is reached from the primary or redundancy port. The EtherCAT master has to consider that a frame on one side is lost and the other frame returns. To find the matching frame it is useful to mark the frames with an identification or use appropriate mechanism.

The cable redundancy is single-error tolerant, i.e. communication with the slaves can continue if the cable is interrupted in one place. When the communication is restored the original communication direction is restored. If the communication is interrupted in more than one place, all connections have to be restored before another fault may occur.

Table 2 lists features for the FP Cable Redundancy.

Function name	Short description	Category	Feature ID	Chapter
Basic Functions	Basic functions to handle cable redundancy	Μ	FPCR_101	6.1.3
Diagnosis Functions	Localization of cable break.	М	FPCR_102	6.1.4
Redundancy with Hot Connect	Combination of feature packs Hot Connect and Cable Redundancy	0	FPCR_103	6.1.5
Redundancy with DC	Combination of FP Cable Redundancy with Distributed Clocks slaves	0	FPCR_104	6.1.6

Table 2:	FP Cable	Redundancy	v s	pecification
		iteaunaune.	y 3	peemeanon

Implementation Aspect

Auto Increment Address changes in case of a cable break. Typically the same address exists twice. Therefore it is necessary to adjust the address in the frame sent on the primary port combined with disabling the command on the secondary port and vice versa.

Note

In ETG.8000→Redundancy, [12], an example of the Cable redundancy is shown.

6.1.3 Basic Functions

Description

In case of cable break all types of EtherCAT communications (process data and mailbox protocols) shall be supported without any restrictions.

Handling of the following use cases:

- Normal operation
- Stay operational in case of cable break between two slaves
- Stay operational in case of cable break between primary port and first slave
- Stay operational in case of cable break between secondary port and last slave
- Stay operational in case of cable fixed
- Start/Stop (State change) in case of cable break
- Adjustment of Auto Increment address in case of cable break
- Frame loss in case of cable break (partner frame was not received)

Reference

In ETG.8000→Redundancy, [12], an example of the Cable redundancy is shown.

6.1.4 Diagnosis Functions

Description

Localization of cable break shall be possible (Number of slaves on each port) Support function to check link status of primary port and of secondary port.

6.1.5 Redundancy with Hot Connect

Description

Combination of feature packs Hot Connect and Cable Redundancy

6.1.6 Redundancy with DC

Description

Combination of feature pack Cable Redundancy and DC synchronization

Implementation Aspects

Special measures need to be taken for a combination of cable redundancy with Distributed Clocks slaves

6.2 FP Motion Control

6.2.1 Version history FP Motion Control

Version history

Version	Comment
1.0.0	First release

6.2.2 FP Motion Control description

For EtherCAT drives two drive profiles, CiA 402 and SERCOS[™], are defined. Within these profiles the support of a drive state machines and modes of operation are specified for example. Synchronization capabilities of the master are indispensible to support the drive profiles.

The drive profiles can be part of the master application.

Table 3 lists features for the FP Motion Control.

Table 3: FP Motion control specification

Function name	Short description	Category	Feature ID	Chapter
Drive Profile CiA402	Support Profile CiA402	М	FPMC_101	6.2.3
Drive Profile SERCOS	Support Profile SERCOS drive profile	0	FPMC_102	6.2.4
Synchronization with DC	Support Synchronization with DC	М	FPMC_103	6.2.5

6.2.3 Drive Profile CiA402

Description

The CiA402 Drive Profile defined in IEC 61800-78-201 shall be supported.

For EtherCAT-based servo drives with CiA402 drive profile the Implementation Guideline ETG.6010 defines a common behaviour for the implementation of the drive profile. At least the requirements in this guideline (Control/Status word, Modes of Operation, supported objects etc.) shall be fulfilled.

References

IEC 61800-7-201

Mapping to EtherCAT in IEC 61800-7-301

ETG.6010

6.2.4 Drive Profile SERCOS

Description

The SERCOS[™] Drive Profile defined in IEC 61800-7-204 should be supported.

References

SEROC Drive Profile in IEC 61800-7-204

Mapping to EtherCAT in IEC 61800-7-304

6.2.5 Synchronization with DC

Description

The master shall support synchronization with DC, as defined in chapter 5.13

Reference

see 5.13

6.3 FP Hot Connect

6.3.1 Version history FP Hot Connect

Version history

Version	Comment
0.0.0	to be defined

6.3.2 FP Hot Connect description

The FP Hot Connect still needs to be defined.

6.4 FP External Synchronization

6.4.1 Version history FP External Synchronization

Version history

Version	Comment
0.0.0	to be defined

6.4.2 FP External Synchronization description

The FP External Synchronization still needs to be defined.

6.5 FP EtherCAT Automation Protocol

6.5.1 Version history FP EtherCAT Automation Protocol

Version history

Version	Comment
0.0.0	to be defined

6.5.2 FP EtherCAT Automation Protocol description

The FP EtherCAT Automation Protocol still needs to be defined.

6.6 FP Device Replacement

6.6.1 Version history FP Device Replacement

Version history

Version	Comment
0.0.0	to be defined

6.6.2 FP Device Replacement description

The FP Device Replacement still needs to be defined.

6.7 FP Mailbox Gateway

6.7.1 Version history FP Mailbox Gateway

Version history

Version	Comment
0.0.0	to be defined

6.7.2 FP Mailbox Gateway description

The FP Mailbox Gateway still needs to be defined.