Overview
Safety over EtherCAT

EtherCAT Technology Group
Safety over EtherCAT

- Requirements
- Safety over EtherCAT Technology
 - Architecture
 - Definitions
 - State Machine
 - Telegram
 - Summary
- Conformance
- Applications
International Standards for Safetybus Systems

• BGIA Test principles GS-ET-26
 – Test principles of the German Institute for Occupational Safety and Health
 – Scope: Bus systems for safety related communication

• IEC 61784-3
 – DIGITAL DATA COMMUNICATIONS FOR MEASUREMENT AND CONTROL
 Part 3: Profiles for functional safety communications in industrial network - General rules and profile definitions
IEC 61784-3

Requirements

Safety over EtherCAT
- Architecture
- Definitions
- State Machine
- Frame Structure
- Summary

Conformance

Applications

ISO 12100-1 & ISO 14121
Safety of machinery – Principles for design and risk assessment

Design of safety-related electrical, electronic and programmable electronic control systems (SRECS) for machinery
SIL based
PL based

Design objective
Applicable standards

IEC 61784-3
Functional safety communication profiles

IEC 61158 / 61784-1/2
Fieldbus for use in industrial control systems

IEC 61784-5
Installation guide (profile-specific)

IEC 61918
Installation guide (common part)

IEC 61784-4
Security

IEC 62443
Security (common)

IEC 61800-5-2
Safety functions for Drives

IEC 61326-3-1
EMI and Functional safety

USA: NFPA 79 (2006)

IEC 60204-1
Safety of electrical equipment

IEC 62061
Functional safety for machinery (SRECS) (including EMI for industrial environment)

ISO 13849-1, -2
Safety-related parts of machinery (SRPCS) Non-electrical

Electrical

IEC 61496
Safety t. e.g. Light curtains

IEC 61131-X
Safety for PLC

IEC 61905

Safety communication as part of a safety system

Requirements

Safety over EtherCAT
- Architecture
- Definitions
- State Machine
- Frame Structure
- Summary

Conformance

Applications

- Probability of failure for the safety system:
 - \(PFH_{\text{Safety function}} = PFH_{\text{Sensor}} + PFH_{\text{Logic}} + PFH_{\text{Actor}} + 2 \times PFH_{\text{Bus}} < 10^{-8} \ldots 10^{-7} /h \) for SIL 3 (IEC 61508)

- The IEC 61784-3 highly recommends that the safety communication channel does not consume more than 1% of the maximum PFD or PFH of the target SIL for which the functional safety communication profile is designed:
 - \(PFH_{\text{Bus}} < 10^{-9} /h \) for SIL 3

- More than 100,000 years communication without an undetected Error!
Safety over EtherCAT

• **Safety over EtherCAT** (FSoE) defines a safety communication layer for the transportation of safety process data between safety over EtherCAT devices.

• FSoE is an open technology within the EtherCAT Technology Group (ETG).

• The protocol is approved by an independent Notified Body (TUV Sued Rail GmbH).
1-channel communication system
Model A according to IEC 61784-3 Annex A
Safety over EtherCAT | Software Architecture

- Black channel approach with safety and non-safety data on the same bus
Safety over EtherCAT | System Example

- Decentralized Safety-Logic
- Standard PLC routes the safety messages
Requirements
Safety over EtherCAT
- Architecture
- Definitions
- State Machine
- Frame Structure
- Summary
Conformance
Applications

FSoE Master
Master of a FSoE Connection. The Master initiates the communication.

The FSoE Master sends a **FSoE Master Frame**, which contains the **SafeOutputs**.

A FSoE Master can manage one or many FSoE Slaves.

SafeOutputs in FSoE Master Frames
Requirements
- Safety over EtherCAT
 - Architecture
 - Definitions
 - State Machine
 - Frame Structure
 - Summary

Conformance

Applications

FSoE Slave

Slave of a FSoE Connection.

The FSoE Slave sends a **FSoE Slave Frame**, after receiving a valid FSoE Master Frame.

The FSoE Slave Frame contains the **SafelInputs**.

A FSoE Slave belongs to one FSoE Master.

FSoE Master

SafeOutputs in FSoE Master Frames

SafeInputs in FSoE Slave Frames

FSoE Slaves

The FSoE Cycle consists of the FSoE Master Frame confirmed by a FSoE Slave Frame.

The FSoE Master sends a FSoE Master Frame to the FSoE Slave.

With sending the FSoE Master Frame the Master starts a Watchdog-Timer for guarding the FSoE Slave.
FSoE Cycle

The FSoE Cycle consists of the FSoE Master Frame confirmed by a FSoE Slave Frame.

The FSoE Master sends a FSoE Master Frame to the FSoE Slave.

With sending the FSoE Master Frame the Master starts a Watchdog-Timer for guarding the FSoE Slave.

The FSoE Master only generates a new FSoE Master Frame after receiving a valid FSoE Slave Frame. This starts a new cycle.
Every device guards that the partner sends a new FSoE Frame within the configured FSoE Watchdogzeit.

If the Watchdog expires, the devices change to the Reset State.
The FSoE Connection is a logical connection between an FSoE Master and an FSoE Slave. It shall be a unique Connection-ID in the system. This must be checked within the configuration.
FSoE | Unique Address

FSoE Slave Address

Beside the Connection-ID every FSoE Slave has in the scope of the system a unique 16-Bit FSoE Slave Address.

This address can be adjusted at the Device, e.g. via a DIP-Switch.

Up to 65,535 Devices can be addressed.

Requirements

Safety over EtherCAT
- Architecture
- Definitions
- State Machine
- Frame Structure
- Summary

Conformance

Applications

© EtherCAT Technology Group
Requirements
Safety over EtherCAT
- Architecture
- Definitions
- State Machine
- Frame Structure
- Summary
Conformance
Applications

FSoE State Machine per Connection

- Every FSoE Connection is handled by an FSoE State Machine.
- The FSoE Master manages a single FSoE State Machine per FSoE Slave.
- After Power-On the FSoE Master and the FSoE Slave are in the State Reset.
- The Safe Outputs can only be set in the state Data.
In case of an error the devices change to the Reset state.

- **Master:** An internal detected Error (communication error or application error)

- **Slave:** An internal error is detected or after receiving a Reset telegram from the Master
The FSoE Frame is mapped as a Container in the process data of the device. Each device detects a new FSoE Frame, if at least one Bit in the FSoE Frame is changed. Every 2 Byte SafeData are checked by a 2 Byte CRC. The maximum number of SafeData is therefore not restricted by the protocol.
<table>
<thead>
<tr>
<th>Error</th>
<th>Measure</th>
<th>Sequence Number</th>
<th>Watchdog</th>
<th>Connection ID</th>
<th>CRC Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unintended repetition</td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Loss</td>
<td></td>
<td>☑</td>
<td>☑</td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Insertion</td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Incorrect sequence</td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Corruption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unacceptable delay</td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masquerade</td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Repeating memory errors in Switches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Incorrect forwarding between segments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>
Safety over EtherCAT | Features

- The FSoE specification has no restrictions according to:
 - Communication layer and interface
 - Transmission speed
 - Length of safe process data

- Routing via unsafe gateways, fieldbus systems or backbones is possible.
Safety over EtherCAT | Features

- Residual Error Probability $R(p) < 10^{-9}/h$

- The protocol is developed according to IEC 61508 Safety Integrity Level SIL 3

- The protocol is approved by TÜV Süd Rail GmbH (Notified body)

- Certified products with Safety over EtherCAT are available since 2005

- Safety-over-EtherCAT is submitted to IEC 61784-3 Functional safety fieldbuses
 - Release date 2010
Safety over EtherCAT | Features

- **FSoE Frame is mapped in the cyclic PDOs**
 - Minimum FSoE Frame-Length: 6 Byte
 - Maximum FSoE Frame-Length: Depending on the number of safe process data of the Slave Device
 - Therefore the protocol is suitable for safe I/O as well as for functional safe motion control

- **Confirmed transfer from the FSoE Master to the FSoE Slave and vice versa.**

- **Safe Device Parameter can be downloaded from the Master to the Slave at Boot-Up of a FSoE Connection**
Safety over EtherCAT | Conformance Test

• Protocol test for the devices
 – Connection via EtherCAT Interface
 – Black box Test

• Test suite available for device manufactures
 – Test suite can be used during device development
 – No special Hardware necessary

• Independent Test Laboratory for confirmation of conformity
Certification Process | Proposal

Requirements

- Safety over EtherCAT
 - Architecture
 - Definitions
 - State Machine
 - Frame Structure
 - Summary

Conformance

Device Development with Safety over EtherCAT (FSoE) according to IEC 61508 or relevant Product Norm

Applications

- EMC Tests (Increased Levels)
 - EMC-Lab
- FSoE Conformance Test
 - EtherCAT Test Center
- IEC 61508 Approval
 - Notified Body

Device Certification

- Notified Body
FSoE Conformance Test | FSoE Slave

Requirements
- Safety over EtherCAT
 - Architecture
 - Definitions
 - State Machine
 - Frame Structure
 - Summary

Conformance

Applications

- Equipment under Test (EuT)
- FSoE Slave
- EtherCAT Slave

- EtherCAT Master
- Test Logic
- Test Report
- XML
- FSoE Slave Information File (ESI)
Safety engineering in modern automation

- Mixed network for standard and safety functions
- Standard network with a decentralized safety island
- Separate networks for standard and safety functions
Safety engineering in modern automation

- Configured Master-Slave Connections
- Communication routed via Standard-PLC
Safety engineering in modern automation

- Configured Master-Slave Connections
- Communication routed via Standard-PLC
Safety engineering in modern automation

- Multi Master networks
- Safety groups with group failsafe possible.
Safety engineering in modern automation

Requirements
Safety over EtherCAT
- Architecture
- Definitions
- State Machine
- Frame Structure
- Summary

Conformance

Applications

- "Master-Master" Communication possible with Master & Slave implementation in the Master device
- Unique Conn-ID
- Used for plant concatenation
Application | Tire and wheel testing machine

- Advantages for the costumer:
- Integration of Safety functions in the TwinSAFE system
 - Emergency stop
 - Safety fence monitoring
- Small switch box directly at the safety fence
- Optimum interaction between standard automation and safety technology
 - Reduced engineering and hardware costs
 - Simplified wiring
 - Modifications are easy to implement
- Only one tool needed for Standard and Safety functions
 - TwinSAFE software editor conveniently integrated in the TwinCAT system
Safety over EtherCAT

www.ethercat.org

EtherCAT Technology Group
Dr. Guido Beckmann
Ostendstr. 196
90482 Nuremberg, Germany
g.beckmann@ethercat.org