EtherCAT

The Ethernet Fieldbus.
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Why Ethernet for Automation?

• Today at controller level: state-of-the-art
• Advantages for fieldbuses:
 – lower costs because the use of commodity technology
 – Ethernet technology is driven by the office sector
 – access to internet technology (e.g. webserver)
 – reduction of interfaces
• But: Common Ethernet does not achieve fieldbus requirements as…
 – Low cost, performance, deterministic (real time),…
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

EtherCAT - The Ethernet Fieldbus.

- EtherCAT is real time down to the I/O level
- No underlying sub-systems any more
- No delays in gateways
- In- and outputs, sensors, actuators, drives, displays: everything in one system!
EtherCAT is faster

- Transmission Rate:
 - 2 x 100 Mbit/s (Fast Ethernet, Full-Duplex)

- Update Times:
 - 256 digital I/O in 11 µs
 - 1000 digital I/O distributed to 100 nodes in 30 µs = 0.03 ms
 - 200 analog I/O (16 bit) in 50 µs, 20 kHz Sampling Rate
 - 100 Servo-Axis (each 8 Byte In + Out) in 100 µs = 0.1 ms
 - 12000 digital I/O in 350 µs
EtherCAT is faster

- Bandwidth Usage of Ethernet for I/O and Drives:
 - Ethernet Frame: ≥ 84 Bytes
 incl. Preamble + IPG (interpacket gap)

 - with 4 Byte input + 4 Byte output per node:
 - 4,75% application data ratio at 0 µs reaction time/node
 - 1,9% application data ratio at 10 µs reaction time/node
EtherCAT is faster

- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Bandwidth Usage Comparison:
- At 4 Byte user data per node:
 - Polling / Timeslicing: ~ 2..5 %
- From 2 Bit user data per node:
 - EtherCAT: ~ 80..97 % (Full Duplex, 2 x 100 MBit/s)
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Functional Principle: Ethernet „on the fly“

• Analogy Fast Train:
 - “Train” (Ethernet Frame) does not stop
 - Even when watching “Train” through narrow window one sees the entire “Train”
 - “Car” (Sub-Telegram) has variable length
 - One can “extract” or “insert” single “persons” (Bits) or entire “groups” (Bytes) – even multiple groups per train
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Functional Principle: Ethernet „on the fly“

- Process data is extracted and inserted on the fly:
 - Process data size per slave almost unlimited (1 Bit…60 Kbyte, if needed using several frames)
 - Compilation of process data can change in each cycle, e.g. ultra short cycle time for axis, and longer cycles for I/O update possible
 - in addition asynchronous, event triggered communication
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Functional Principle: Ethernet „on the fly“

- Minimal protocol overhead via implicit addressing
 - Optimized telegram structure for decentralized I/O
 - Communication completely in hardware: maximum (+ predictable!) performance
 - No switches needed if only EtherCAT devices in the network
 - Outstanding diagnostic features
 - Ethernet-compatibility maintained
Performance: Application Example

- 40 Axis (each 20 Byte Input- and Output-Data)
- 50 I/O Station with a total of 560 EtherCAT Bus Terminals
- 2000 Digital + 200 Analog I/O, Bus Length 500 m
- Performance EtherCAT: Cycle Time = 276 µs at 44 % Bus Load, Telegram Length = 122 µs

![Graph comparing cycle times of different protocols]

- EtherCAT: 276 µs
- SERCOS III: 479 µs
- Profinet IRT: 763 µs
- Powerlink: 2347 µs
- Profinet I/O: 6355 µs

...in spite of this cycle time still 56% bandwidth remaining, e.g. for TCP/IP
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

‘Slow’ Control Systems benefit, too

- Reaction time with legacy fieldbus I/O:

-\[T_{mpd} \]
-\[T_{I/O} \]

\(T_{mpd} \): Master Processing Delay

\(T_{I/O} \): Local I/O Update Time
 (local Extension Bus + Firmware)
‘Slow’ Control Systems benefit, too

- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

System Architecture with EtherCAT:

- **no dedicated Master Device any more**
- **on underlying extension bus any more**
‘Slow’ Control Systems benefit, too

- System Architecture with EtherCAT:

EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

$T_{DMA} = \text{Time for Data Transfer from/to Ethernet Controller via Direct Memory Access: negligible}$
‘Slow’ Control Systems benefit, too

- Reaction Time with EtherCAT:

 - Reaction time reduced significantly with the same controller performance
 - No underlying local I/O cycles and extension bus delays any more
 - Due to the very simple protocol no dedicated master systems (e.g. plug-in cards) required

EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

© EtherCAT Technology Group, 2009
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Fieldbus: requires Mapping in Control System

- Traditional fieldbus system generate *physical* process image
- This has to be mapped to *logical* process image(s)
Fieldbus: requires Mapping in Control System

- The same applies to control system with just one process image
- Resorting of process data ("Mapping") is required, too
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

EtherCAT: Mapping moved into Slave Devices

- Control System is unburdened, master becomes very simple
- Data is transmitted according to the application requirements: extremely fast, flexibly and efficiently
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Direct Memory Access saves time

- **Fieldbus cards**: up to 30% of CPU time for data copying

- **EtherCAT**: MAC is PCI Bus master, data is provided by DMA directly to PC RAM: CPU relieved more performance
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

EtherCAT Propagation Delay Measurement (1)

- EtherCAT Node measures time difference between leaving and returning frame
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

EtherCAT Propagation Delay Measurement (2)

- EtherCAT Node measures time difference between leaving and returning frame

© EtherCAT Technology Group, 2009
Distributed Clocks

- Precise Synchronization (<< 1 µs!) by exact adjustment of Distributed Clocks
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

External Clock Synchronization: IEEE 1588

- Switchport with integrated IEEE 1588 Boundary Clock
EtherCAT is:
- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Distributed Clocks

- Long Term Scope View of two separated devices
- 300 Nodes in between, 120m Cable Length

Graph:
- Simultaneity: ~15 ns
- Jitter: ~ +/-20 ns
EtherCAT is Industrial Ethernet!

- EtherCAT uses Standard Ethernet Frames: IEEE 802.3
- Alternatively via UDP/IP (if IP Routing is needed)
- no shortened frames

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile
EtherCAT is Industrial Ethernet!

- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

• fully transparent for TCP/IP
• all Internet technologies (HTTP, FTP, Webserver,…) available without restricting the real time capabilities!
• full tool access to devices at real time operation – with and without TCP/IP
EtherCAT is Industrial Ethernet!

- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

- Any Ethernet Device can be connected to Switchport
- Access to Webserver with Standard Browser
EtherCAT is Industrial Ethernet!

- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

• Virtual Ethernet Switch routes any Ethernet Frame
• From inside as well as from outside the segment
Switchport: Any Ethernet Protocol

- Interface to any Ethernet Device or Network
- Ethernet Frames are inserted into EtherCAT Protocol:
 - ‘Ethernet over EtherCAT’
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Vertical Integration (1)

- …via Switchport

 + any Ethernet Protocol can be used
 + requires only one Ethernet Port (at IPC/Controller)
 + EtherCAT performance is not limited
Vertical Integration (2)

- ...via 2. Ethernet Port

- + any Ethernet Protocol can be used
- + EtherCAT performance is not limited
- but: requires second Ethernet Port (at IPC/Controller)
Vertical Integration (3)

- ...via Switch

- + any Ethernet Protocol can be used
- + requires only one Ethernet Port (at IPC/Controller)
- but: performance reduced by switch delay (and generic Ethernet traffic)
EtherCAT wiring is more flexible

- Standard Ethernet Topology: Star
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

EtherCAT wiring is more flexible

- Flexible tree structures – arbitrarily extendable
 - Topology variants like Line, Star, Tree, Daisy Chain
 - Drop Lines possible; can be used in any combination!
 - Up to 65,535 nodes for each EtherCAT segment
 - Standard Ethernet cabling
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

EtherCAT wiring is more flexible

- Ethernet Signal Variants of EtherCAT:
 - 100BASE-TX (up to 100 m between 2 nodes)
 - 100BASE-FX (longer distances between 2 nodes)
 - LVDS (for modular devices)

- Any number of physical layer changes allowed

*LVDS: Low Voltage Differential Signaling according to ANSI/TIA/EIA-644, also used in IEEE 802.3ae (10Gigabit Ethernet)
EtherCAT Extra Large System Test

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

10.056 EtherCAT Nodes
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

EtherCAT instead of PCI

- Protection of your investment
- smooth migration path from legacy fieldbus to EtherCAT
- seamless integration of existing fieldbus devices, e.g.:
 - AS-Interface
 - CAN, CANopen
 - CC-Link
 - ControlNet
 - DeviceNet
 - Ethernet/IP
 - FIPIO
 - Interbus
 - IO-Link
 - Lightbus
 - LONWorks
 - Modbus Plus, RTU, TCP
 - MPI
 - PROFINET
 - PROFINET IO
 - …

- maximum system expandability with low cost fieldbus gateways
EtherCAT instead of PCI

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

• Update Times (examples):
 - Process image update-time via PCI (500 Bytes input and output data each): 400 µs
 - Process image update-time via EtherCAT (1,500 Bytes input and output data): 150 µs
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

EtherCAT instead of PCI

- No Slots in Control System (IPC or PLC) required any more
- Nevertheless maximum expandability
EtherCAT is easier to configure

- **Addressing**
 - No manual address setting required
 - Addresses can be assigned automatically
 - Addresses can be kept
 - no new addressing if nodes are added

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile
EtherCAT is easier to configure

- **Topology:**
 - Automatic topology target/actual comparison

- **Diagnosis:**
 - Diagnosis with exact localization

- **Network planning:**
 - Performance independent of:
 - Slave implementation
 - Topology (no Switches/Hubs)
EtherCAT is lower costs (1): Engineering

- Faster
- Synchronization
- Industrial Ethernet
- Flexible
- Easier to configure
- Cost effective
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

Implementation / Tools:
- Standard Network Monitor Tools, e.g. MS Network Monitor or Wireshark: free of charge
- Parser Software: free of charge

Less effort for Network planning:
- Simplified configuration
- Default settings will work, no network tuning

Improved Diagnosis:
- Faster error handling leads to less downtime

Faster Setup:
- No address setting required
EtherCAT is lower costs (2): Hardware

Master:
- no dedicated plug in card (co-processor)
- on-board Ethernet Port is fine

Slave:
- low cost Slave Controller
 - FPGA or ASIC
 - for simple devices: no µC needed
 - no powerful µC needed

Infrastructure:
- no Switches/Hubs required
- Standard Ethernet Cabling + Connectors
EtherCAT is easier to implement: Slave

- **Slave Implementation:**
 - All time critical functions implemented on ASIC or FPGA
 - ESC handles Real-time Protocol in Hardware
 - Integrated Communication State Machine
 - Network Performance independent of
 - Slave-µC Performance
 - Protocol Stack
 - For usage with or without µC (Host CPU)
 - Integrated DPRAM (1…8kByte)
 - Integrated Distributed Clock Handling
 - Ultra precise interrupts to µC
EtherCAT Slave Controller Features: ASIC (1)

<table>
<thead>
<tr>
<th>Name</th>
<th>ET1100</th>
<th>ET1200</th>
<th>netX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>ASIC</td>
<td>ASIC</td>
<td>ASIC</td>
</tr>
<tr>
<td>Hardware Supplier</td>
<td>BECKHOFF</td>
<td>BECKHOFF</td>
<td>hilscher</td>
</tr>
<tr>
<td>Package</td>
<td>BGA128 0,8mm Pitch</td>
<td>QFN48 0,5mm Pitch</td>
<td>BGA201 0,8mm Pitch</td>
</tr>
<tr>
<td>Size</td>
<td>10 x 10 mm</td>
<td>7 x 7 mm</td>
<td>13 x 13 mm</td>
</tr>
<tr>
<td>μC Interface</td>
<td>serial/parallel (8/16-bit, async)*</td>
<td>serial*</td>
<td>serial (SPI), parallel (8/16/32-bit, async)</td>
</tr>
<tr>
<td>Digital I/O</td>
<td>32</td>
<td>8-16*</td>
<td>16</td>
</tr>
<tr>
<td>DPRAM</td>
<td>8 kByte</td>
<td>1 kByte</td>
<td>6 kByte</td>
</tr>
<tr>
<td>SyncManager</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>FMMUs</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Distributed Clocks</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No. Of Ports</td>
<td>2-4 (MII/E-bus)*</td>
<td>2-3 (E-bus/max. 1xMII)*</td>
<td>2 (MII)</td>
</tr>
<tr>
<td>Specials</td>
<td>Routable with standard PCB</td>
<td>-</td>
<td>Multi Protocol Support</td>
</tr>
</tbody>
</table>

* configurable
EtherCAT Slave Controller Features: ASIC (2)

<table>
<thead>
<tr>
<th>Name</th>
<th>netX 100</th>
<th>netX 500</th>
<th>netX50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>ASIC</td>
<td>ASIC</td>
<td>ASIC</td>
</tr>
<tr>
<td>Hardware Supplier</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>Package</td>
<td>BGA345 1mm Pitch</td>
<td>BGA345 1mm Pitch</td>
<td>PBGA 1mm Pitch</td>
</tr>
<tr>
<td>Size</td>
<td>22x22 mm</td>
<td>22x22 mm</td>
<td>19x19 mm</td>
</tr>
<tr>
<td>µC Interface</td>
<td>µC-Bus (internal, 32-bit)</td>
<td>µC-Bus (internal, 32-bit)</td>
<td>µC-Bus (internal, 32-bit)</td>
</tr>
<tr>
<td>Digital I/O</td>
<td>16 (GPIO)</td>
<td>16 (GPIO)</td>
<td>32 (GPIO)</td>
</tr>
<tr>
<td>DPRAM</td>
<td>256/400 Byte (Mailbox/Process Data)</td>
<td>256/400 Byte (Mailbox/Process Data)</td>
<td>6 kByte</td>
</tr>
<tr>
<td>SyncManager</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>FMMUs</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Distributed Clocks</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No. Of Ports</td>
<td>2 (100BASE-TX)</td>
<td>2 (100BASE-TX)</td>
<td>2 (100BASE-TX)</td>
</tr>
</tbody>
</table>

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile
EtherCAT Slave Controller Features: FPGA

<table>
<thead>
<tr>
<th>Name</th>
<th>ET1810/ET1811/ET1812</th>
<th>ET1815/ET1816/ET1817</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>FPGA + IP Core</td>
<td>FPGA + IP Core</td>
</tr>
<tr>
<td>Hardware Supplier</td>
<td>ALTERA</td>
<td>XILINX</td>
</tr>
<tr>
<td>Supported Chips</td>
<td>Cyclone I+II+III, Stratix I+II+III+IV+GX+II GX, Arria GX</td>
<td>Spartan 3+3E+3A+3AN+3ADSP, Virtex II+II Pro+II Pro X+4+5</td>
</tr>
<tr>
<td>Package</td>
<td>FPGA dependent</td>
<td>FPGA dependent</td>
</tr>
<tr>
<td>Size</td>
<td>FPGA dependent</td>
<td>FPGA dependent</td>
</tr>
<tr>
<td>μC Interface</td>
<td>serial/parallel (8/16-bit, async) AVALON®*</td>
<td>serial/parallel (8/16bit, async) OPB®*</td>
</tr>
<tr>
<td>Digital I/O</td>
<td>8-32*</td>
<td>8-32*</td>
</tr>
<tr>
<td>DPRAM</td>
<td>1...60 kByte*</td>
<td>1...60 kByte*</td>
</tr>
<tr>
<td>SyncManager</td>
<td>0...8*</td>
<td>0...8*</td>
</tr>
<tr>
<td>FMMUs</td>
<td>0...8*</td>
<td>0...8*</td>
</tr>
<tr>
<td>Distributed Clocks</td>
<td>Yes*</td>
<td>Yes*</td>
</tr>
<tr>
<td>No. Of Ports</td>
<td>2 (MII)</td>
<td>2 (MII)</td>
</tr>
<tr>
<td>Specials</td>
<td>Several IP Core License models available</td>
<td>Several IP Core License models available</td>
</tr>
</tbody>
</table>

*configurable

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement
- Well proven
- Open
- Conformance
- Safety
- Redundancy
- Versatile

© EtherCAT Technology Group, 2009
EtherCAT is easier to implement: Master

- Master Implementation:
 - e.g. with Master Sample Code (Source)
 - EtherCAT Configuration Tool
 - XML Data format of ESI and ENI
EtherCAT is easier to implement: Master

- Example: Master with just one process image
 - typical e.g. for small controllers with one control task
 - up to 1488 Byte Process data size
 - Header for Process Data communication remains constant

```
<table>
<thead>
<tr>
<th>Ethernet Header</th>
<th>ECAT</th>
<th>EtherCAT Telegram</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>SA</td>
<td>Type</td>
<td>Frame HDR</td>
</tr>
<tr>
<td>6 Bit</td>
<td>6 Bit</td>
<td>2 Bit</td>
<td>2 Bit</td>
</tr>
</tbody>
</table>
```

- Master can be implemented with minimal effort
- No separate communication processor required (e.g. on plug-in card)
- Much simpler that legacy fieldbus systems
- Very much simpler than competing Industrial Ethernet approaches…
EtherCAT is well proven

- In series production since 2003
- Numerous applications
- Great product variety of available EtherCAT products
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance
- Safety
- Redundancy
- Versatile

EtherCAT Architecture + Device Profiles

EtherCAT Device

File System, Bootloader
HTTP, FTP,…

DEVICE Application

The SERCOS® Standard

The CANopen Standard

Process Data

File Access

TCP
UDP
IP

Ethernet

Service Channel

IDN

IEC 61800-7-204
IEC 61800-7-304

Object Dictionary

SDO

EN 50325-4
IEC 61800-7-201
IEC 61800-7-301

PDO Mapping

AT MDT

Mailbox

EtherCAT Slave Controller

Ethernet Physical Layer

FoE
EoE
SoE
CoE
CoE/SoE

File System, Bootloader
HTTP, FTP,…

DEVICE Application

The SERCOS® Standard

The CANopen Standard

Process Data

File Access

TCP
UDP
IP

Ethernet

Service Channel

IDN

IEC 61800-7-204
IEC 61800-7-304

Object Dictionary

SDO

EN 50325-4
IEC 61800-7-201
IEC 61800-7-301

PDO Mapping

AT MDT

Mailbox

EtherCAT Slave Controller

Ethernet Physical Layer

FoE
EoE
SoE
CoE
CoE/SoE

*SERCOS interface™ is a trademark by SI e.V.
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile
IEC 61491 EtherCAT Servodrive Architecture

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile

IEC 61800-7-204 is the SERCOS* Drive Profile

*SERCOS interface™ is a trademark by SI e.V.
EtherCAT in IEC 61800-7

IEC 61800-7: Generic Interface and use of profiles for power drive systems

IEC 61800-7-1: Interface Definition

Annex A: Mapping to DS402
Annex B: Mapping to CIP
Annex C: Mapping to PROFIdrive
Annex D: Mapping to SERCOS*

IEC 61800-7-200: Profile Specifications

IEC 61800-7-201: Profile CIA 402
IEC 61800-7-202: Profile CIP Motion
IEC 61800-7-203: Profile PROFIdrive
IEC 61800-7-204: Profile SERCOS*

IEC 61800-7-300: Mapping of Profiles to Network Technologies

IEC 61800-7-301
Mapping to CANopen
Mapping to EPL
Mapping to EtherCAT

IEC 61800-7-304
Mapping to SERCOS I/II
Mapping to SERCOS III
Mapping to EtherCAT

*SERCOS interface™ is a trademark by SI e.V.

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile

© EtherCAT Technology Group, 2009
EtherCAT is an open technology

 EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance
- Safety
- Redundancy
- Versatile

• Foundation: November 2003
• Tasks: Support, Advancement and Promotion of EtherCAT
• The world’s largest organization dedicated to Industrial Ethernet
• more than 940* member companies from 45 countries in 6 continents:
 – Device Manufacturers
 – End Users
 – Technology Providers
• Membership is open to everybody

*as of Feb 2009
EtherCAT is an open technology

- Protocol is disclosed completely:
 - EtherCAT is IEC, ISO and SEMI Standard
 (IEC 61158, IEC 61784, ISO 15745, SEMI E54.20)

- Slave Controller from several sources available
- Slave Controller provides interoperability
- ETG organizes Interoperability Testing („Plug Fests“), Workshops and Seminars
- Conformance Testing + Certificates

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile

© EtherCAT Technology Group, 2009
EtherCAT is an open technology

- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile

- Master Stacks for various RTOS available*, including Open / Shared Source!
 - eCos
 - Intime
 - Linux with RT-Preempt
 - MICROWARE OS-9
 - On Time RTOS-32
 - PikeOS
 - Proconos OS
 - Real-Time Java
 - RMOS
 - RT Kernel
 - RT-Linux
 - RTXC Quadros
 - RTAI Linux
 - QNX
 - VxWin + CeWin
 - VxWorks
 - Windows CE
 - Windows XP/XPE with CoDeSys SP RTE
 - Windows XP/XPE with TwinCAT RT-Extension
 - XENOMAI Linux

*as of May 2009
EtherCAT Technology Group and IEC

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile

- Management Board of IEC has approved Liaison of EtherCAT Technology Group with IEC SC65C WG 11/12/13 + JWG10 (SC65C: Digital Communication)

- Thus ETG is official IEC Standardization Partner
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile

ETG Team Worldwide
ETG Membership Development

- As of April 2009: 1000 Members
EtherCAT is:

- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile

ETG: Active Members

- Much more important than membership figures: How many are active, how many implement the technology?
- Dec 2008: More than **690 Implementation Kits** sold to ETG Members (25% Master, 75% Slaves), plus there are Open + Shared Source masters!
- SPS/IPC/Drives 2008: 60 Vendors with over 180 different EtherCAT Devices at ETG booth:
 - 25 different drives from 16 manufacturers jointly operating in one network
 - 15 different functional Masters in one setup, using 10 different operating systems
 - Safety devices (master + slave devices) from 2 manufacturers operating in one system
 - Master to Master and redundancy live demo
EtherCAT: Large Product Selection

I/O, Controller, HMI, Servo Drives, Variable Speed Drives, Sensors, Slave + Master Development Kits, Control Panels, Hydraulic Valves and Pneumatic Valves, …

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open
- Conformance
- Safety
- Redundancy
- Versatile
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓

Conformance and Interoperability

- Conformance and interoperability are very important factors for the success of a communication technology
 - Conformity to the specification is an obligation to all users of the EtherCAT technology
 - Therefore the **EtherCAT Conformance Test Tool** (CTT) is used
 - Test Cases for the CTT are provided by the Working Group „Conformance“ within the ETG community
 - The **EtherCAT Conformance Test** proves conformance officially with issuing a certificate after passing the test at an official **EtherCAT Test Center** (ETC)
Safety over EtherCAT: Features (1)

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile ✓

Safety over EtherCAT (FSoE) defines a safety communication layer for the transportation of safety process data between Safety over EtherCAT devices.

- FSoE is an open technology within the EtherCAT Technology Group (ETG).
- The protocol is developed according to IEC 61508
 - It meets the Safety Integrity Level (SIL) 3
 - Residual Error Probability $R(p) < 10^{-9}$
- The protocol is approved by an independent Notified Body (TÜV)
Safety over EtherCAT: Features (2)

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety
- Redundancy
- Versatile

Safety over EtherCAT®

- FSoE Frame is mapped in the cyclic PDOs
 - Minimum FSoE Frame-Length: 6 Byte
 - Maximum FSoE Frame-Length: depending on the number of safe process data of the Slave Device
 - Therefore the protocol is suitable for safe I/O as well as for functional safe motion control

- Confirmed transfer from the FSoE Master to the FSoE Slave and vice versa.

- Safe Device Parameter can be downloaded from the Master to the Slave at Boot-Up of a FSoE Connection

- Certified products with Safety over EtherCAT are available since 2005.
Safety over EtherCAT: Features (3)

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety
- Redundancy
- Versatile

Safety over EtherCAT®

- The FSoE specification has no restrictions according to:
 - Communication layer and interface
 The communication layer is not part of the safety measures:
 black channel
 (assumed unsolved bit error rate: $p = 10^{-2}$)
 - Transmission speed
 - Length of safe process data
 (length of safe process data is arbitrary)

- Routing via unsafe gateways, fieldbus systems or backbones is possible
Safety over EtherCAT: Routing

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓

- Safety
- Redundancy
- Versatile

• Can be routed via non-safe gateways
• Can be routed via fieldbus systems
• One Safety technology for (almost) all bus systems
Safety over EtherCAT: Software Architecture

- Black channel approach
 - with safety and non-safety data on the same bus
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety
- Redundancy
- Versatile

Safety over EtherCAT: Hardware Architecture

- One channel communication system
 - Model A according to IEC 61784-3 Annex A

![Diagram showing the hardware architecture for safety over EtherCAT.](image)
Safety over EtherCAT: Frame Structure

- Ethernet telegram

 - Safety over EtherCAT frame
 - The FSoE Frame is a data container mapped in the process data of the devices
 - A new FSoE Frame is recognized if at least one bit has changed according to the last frame
 - For every 2 Byte SafeData a 2 Byte CRC is calculated
 - Up to n Byte SafeData can be transmitted
Safety over EtherCAT: Safety Measures

<table>
<thead>
<tr>
<th>Error</th>
<th>Measure</th>
<th>Sequence Number</th>
<th>Watchdog</th>
<th>Connection ID</th>
<th>CRC Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unintended repetition</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Loss</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Insertion</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Incorrect sequence</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corruption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Unacceptable delay</td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masquerade</td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Repeating memory errors in Switches</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>Incorrect forwarding between segments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>
Safety over EtherCAT: Implementation Example

- Decentralized Safety-Logic
- Standard PLC routes the safety messages

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile ✓
Safety over EtherCAT: Advantages

- Fully integrated solution:
 - safe and standard communication in one channel
- Reduction of fieldbuses and interfaces
- Central configuration, diagnosis and maintenance for safe and 'unsafe' I/O in one tool
- Safety application makes full use of EtherCAT advantages:
 - Short reaction times
 - Almost unlimited number of nodes
 - Large network extensions
 - Cable redundancy options
 - High Flexibility with Hot Connect
EtherCAT: High availability

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile

- Cabling redundancy
 - 2nd Ethernet port needed on master side only
- Hot Swap of devices
- Hot Connect of network segments
- Master Redundancy with Hot Swap
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile

Without Redundancy: Normal Operation

EtherCAT Master
RX Unit
TX Unit
RX
TX
MAC 1
RX
TX

Slave 1
RX
TX
TX
RX

Slave 2
RX
TX
TX
RX

... ...

Slave N
RX
TX
TX
RX

© EtherCAT Technology Group, 2009
Without Redundancy: Cable Failure

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy
- Versatile
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile

Without Redundancy: Node Failure

EtherCAT Master
- RX Unit
- TX Unit
- MAC 1
- RX
- TX

Slave 1
- RX
- TX
- TX
- RX

Slave 2
- RX
- TX
- TX
- RX

Slave N-2
- RX
- TX
- TX
- RX

Slave N-1
- RX
- TX
- TX
- RX

Slave N
- RX
- TX
- TX
- RX
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile

With Redundancy: Normal Operation

EtherCAT Master

RX Unit
TX Unit

MAC 1
RX Unit
TX Unit
MAC 2

Slave 1
RX TX
TX RX

Slave 2
RX TX
TX RX

Slave N
RX TX
TX RX

Only 2nd Ethernet Port required – no special Interface Card

© EtherCAT Technology Group, 2009
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile

With Redundancy: Cable Failure
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile

With Redundancy: Node Failure
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Versatile ✓

EtherCAT: various system architecture

- Master to Slave
- Slave to Slave
- Master to Master
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile ✓

EtherCAT and Wireless Communication

- Wireless Devices can be connected via Switchport
- Wireless segment does not slow down EtherCAT communication
- Protocol: EtherCAT Automation Protocol
 - Pushed and/or Polled Process Data Exchange
- Wireless Segment transparent for Master Device

![Diagram showing wireless communication setup with Switchport and RFID Reader](image-url)
EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile

Why do Companies choose EtherCAT?

- **High Performance**
 - EtherCAT is the fastest Industrial Ethernet technology
- **Flexible Topology**
 - Benefit not only for widely distributed applications
- **Ease of Use**
 - Easy configuration and maintenance
- **Low Cost**
 - Inexpensive implementation & infrastructure
- **Functional Safety**
 - Safety communication integrated
- **Product Variety**
 - Great variety of available EtherCAT products
EtherCAT Application Fields

- Fast applications, e.g.:
 - packaging machines
 - high speed presses
 - injection molding machines
 - woodworking machines
 - machine tooling (CNC)
 - test beds
 - robotics
 - …

- Widely distributed applications, e.g.:
 - materials handling
 - logistics
 - data acquisition
 - …
EtherCAT Application Fields

- Due to low cost master and simple wiring as well:
 - Small Embedded Controller
 - Small PLCs
 - Any PC based Control Application
 • with or without real time requirements

- EtherCAT allows one to apply fieldbus technology where cost issues require direct wiring today
EtherCAT - The Ethernet Fieldbus.

EtherCAT is:
- Faster ✓
- Synchronization ✓
- Industrial Ethernet ✓
- Flexible ✓
- Easier to configure ✓
- Cost effective ✓
- Easier to implement ✓
- Well proven ✓
- Open ✓
- Conformance ✓
- Safety ✓
- Redundancy ✓
- Versatile ✓

Please visit www.ethercat.org for more information

EtherCAT Technology Group
ETG Headquarters
Ostendstr. 196
90482 Nuremberg, Germany
Phone: +49 911 54056 20
info@ethercat.org

© EtherCAT Technology Group, 2009