What is TSN – Time Sensitive Networking?

- Ethernet with switches
 - best effort approach
 - Use case: work stations, PCs
- Use cases with real-time requirements
 - Audio/ Video, Mobile Base Stations, Automotive, Automation, ...
- New approach for <u>switching</u>: TSN Time Sensitive Networking allows combination with best effort traffic (if bandwidth is high enough)

TSN Standard: IEEE 802.1 project

- Many different standards
 - 1. 802.1Qbu
 - 2. 802.1Qbv
 - 3. 802.1Qca
 - 4. 802.1CB
 - 5. 802.1Qcc
 - 6. 802.1AS-REV
 - 7. 802.1Qch
 - 8. 802.1Qci
 - 9. 802.1Qcj
 - 10. 802.1CM
 - 11. 802.1Qcp
 - 12. 802.1Qcr
 - 13. 802.1CS

addressing different problems

"tool box" of different features

User has to choose "tools"

Overview and Status

Standard	Title	Status	
IEEE 802.1AS-Rev	Timing and Synchronization for Time- Sensitive Applications	Performance improvement, support of multiple time domains and redundancy included. Can synchronize Layer 3 networks. (2019)	W
IEEE 802.1Qbu	Frame Preemption	Use of Ethernet Mechanism, requires new MAC	Р
IEEE 802.1Qbv	Enhancements for Scheduled Traffic	So called Time Aware Shaper (TAS) = mainstream technology.	Ρ
IEEE 802.1Qca	Path Control and Reservation	Not longer in scope as too much data and service interaction needed to specify a schedule	Р
IEEE 802.1CB	Frame Replication and Elimination for Reliability (Seamless Redundancy)	Support of seamless media redundancy. Allows multiple paths for streams.	Ρ
IEEE 802.1Qcc	Stream Reservation Protocol (SRP) Enhancements and Performance Improvements	SRP is not suited to run a schedule with several hundreds of streams. New config model selected as a result. (2017?)	S
IEEE 802.1Qch	Cyclic Queuing and Forwarding	Streams received in previous cycle forwarded in next cycle	Р
IEEE 802.1Qci	Per-Stream Filtering and Policing	Packets accepted if the port-, time- and rate-constrains met	Р
IEEE 802.1CM	Time-Sensitive Networking for Fronthaul	Telecom TSN profile	W
IEEE 802.1Qcr	Asynchronous Traffic Shaping	Shaper that operates on non synchronized streams	Т
IEEE 802.1Qcp	802.1Q YANG data model	Provider bridging configuration using LLDP	W
IEEE 802.1Qcj	Auto Attach to PBB	Needed for .1Qcc services. YANG textual encoding should replace MIB/SNMP. (2019)	Т
IEEE 802.1CS	LRP (new link-local registration protocol)	Procedures to replicate a registration database and changes to parts from one end to the other of a point-to-point link. (2021)	Т

E=EditorDraft, T=TSNballot, W=802.1ballot, S=sponsorBallot, R=RevCom, P=published

Overview and Status

Standard	Title	Status	
IEEE 802.1AS-Rev	Timing and Synchronization for Time- Sensitive Applications		W
IEEE 802.1Qbu	Frame Preemption		Ρ
IEEE 802.1Qbv	Enhancements for Scheduled Traffic		Ρ
IEEE 802.1Qca	Path Control and Reservation		Р
IEEE 802.1CB	Frame Replication and Elimination for Reliability (Seamless Redundancy)		Ρ
IEEE 802.1Qcc	Stream Reservation Protocol (SRP) Enhancements and Performance Improvements	Several parts released: P = published	S
IEEE 802.1Qch	Cyclic Queuing and Forwarding		Р
IEEE 802.1Qci	Per-Stream Filtering and Policing		Р
IEEE 802.1CM	Time-Sensitive Networking for Fronthaul		W
IEEE 802.1Qcr	Asynchronous Traffic Shaping		Т
IEEE 802.1Qcp	802.1Q YANG data model		W
IEEE 802.1Qcj	Auto Attach to PBB		Т
IEEE 802.1CS	LRP (new link-local registration protocol)		Т

E=EditorDraft, T=TSNballot, W=802.1ballot, S=sponsorBallot, R=RevCom, P=published

- TSN is a paradigm shift in the IEEE 802 world
 - Addresses real time needs of various industries
 - Moving away from the best effort approach
 - Forward frames as fast as possible in the IEEE802.1 context
 - Without losses due to congestion (reservation calculates buffers)
- Part of the bandwidth is reserved for time sensitive streams
- Other part of bandwidth remains for legacy traffic (higher frame drop rate, possibly higher delays)

\rightarrow TSN intends to reserve a fraction of the bandwidth for time sensitive traffic

Real time streams within TSN network – non-TSN devices can be connected outside

- TSN communication is done by so called streams
- IEEE 802.1 standard terms
 - "Talker" = the sender of a stream
 - "Listener" = the receiver of a stream
 - A stream is an unidirectional flow of data from a talker to one or more listeners
 - A stream transmits a number of frames with a number of data bytes within a given interval

TSN: set of standards relevant for Streaming with EtherCAT

Standard	Title	Status	
IEEE 802.1AS-Rev	Timing and Synchronization for Time- Sensitive Applications	Performance improvement, support of multiple time domains and redundancy included. Can synchronize Layer 3 networks. (2019)	W
IEEE 802.1Qbu	Frame Preemption	Use of Ethernet Mechanism, requires new MAC	Р
IEEE 802.1Qbv	Enhancements for Scheduled Traffic	So called Time Aware Shaper (TAS) = mainstream technology.	Р
IEEE 802.1Qca	Path Control and Reservation	Not longer in scope as too much data and service interaction needed to specify a schedule	Р
IEEE 802.1CB	Frame Replication and Elimination for Reliability (Seamless Redundancy)	Support of seamless media redundancy. Allows multiple paths for streams.	Ρ
IEEE 802.1Qcc	Stream Reservation Protocol (SRP) Enhancements and Performance Improvements	SRP is not suited to run a schedule with several hundreds of streams. New config model selected as a result. (2017?)	S
IEEE 802.1Qch	Cyclic Queuing and Forwarding	Streams received in previous cycle forwarded in next cycle	Ρ
IEEE 802.1Qci	Per-Stream Filtering and Policing	Packets accepted if the port-, time- and rate-constrains met	Р
IEEE 802.1CM	Time-Sensitive Networking for Fronthaul	Telecom TSN profile	w
IEEE 802.1Qcr	Asynchronous Traffic Shaping	Shaper that operates on non synchronized streams	Т
IEEE 802.1Qcp	802.1Q YANG data model	Provider bridging configuration using LLDP	W
IEEE 802.1Qcj	Auto Attach to PBB	Needed for .1Qcc services. YANG textual encoding should replace MIB/SNMP. (2019)	Т
IEEE 802.1CS	LRP (new link-local registration protocol)	Procedures to replicate a registration database and changes to parts from one end to the other of a point-to-point link. (2021)	Т

E=EditorDraft, T=TSNballot, W=802.1ballot, S=sponsorBallot, R=RevCom, P=published

© EtherCAT Technology Group

Relevant TSN Technologies

- IEEE 802.1AS-REV Time Synchronization
 - Profile of 1588

- "Time Aware Shaper" TAS
- Interfering frames before start of time-sensitive time period
 → guard band

- IEEE 802.1Qbu: Frame Pre-emption
 - Reduces guard band

EtherCAT and TSN

- EtherCAT master and EtherCAT segment connected via heterogeneous switch-based network
- Improve real-time capabilities of EAP in switched-based networks

TSN network between master and EtherCAT segment

Adaptation of TSN stream to EtherCAT segment in <u>first EtherCAT slave</u>

Adaptation of TSN stream to EtherCAT segment in Switch

TSN network between EtherCAT Masters

EAP transferred on TSN-enhanced 802.1 network

- ETG defines profile specification for usage of EtherCAT with TSN with focus on
 - Time based sending
 - Synchronization
- Adaptation of TSN streams to EtherCAT segment
- Includes
 - Handling of MAC addresses
 - Synchronizing .AS and DC time
 - Set (VLAN) Identifier as base for unique Stream addresses
 - Can be either feature of switch or of EtherCAT device (1st device)

Profile means...

- Defines how to use standards but not a new protocol
- Specifies a generic interface to TSN "tool box" (not a specific protocol)

Stream Adaptation: Details

- Always a pair of streams is set up
- Minimum one <u>pair</u>, but more might be set up, e.g.
 - One for cyclic
 - One for acyclic (strict priority)
 - for additional transfers
- Traffic class for pair of stream always the same
- Maintain Traffic Class (VLAN Prio)
- Maintain length (EtherCAT Rx/TX frame length identical)

Adaptation provides virtual Ethernet channel

- Adaptation maps TSN stream to EtherCAT frame
- Adaptation is hardware independent
- Adaptation on
 - Master
 - Switch or first EtherCAT slave

- Slave
 - No change to EtherCAT implementations required
- Master
 - Lean stream adaptation
 - Only TSN synchronization and stream announcement required
 - Optional: Multiplexing Layer to connect multiple (TSN) functions or segments

 multiple applications connected to one (GBit/s) port

EtherCAT TSN Adaptation can be done on either:

- Switch
 - incl. TSN features: IEEE802.1.AS/ .Qbu/.Qbv /...
- specific component between TSN network and EtherCAT segment

ETG: first hand TSN Know-How

ETG is actively participating in the TSN Working Groups: Dr. Karl Weber is an active member of IEEE 802.1

- Close cooperation of ETG and IEEE 802.1 working group for technical coordination
- Grants access to IEEE 802.1 documents working documents even if those are not yet released
- Ensures that TSN standards can be referenced within the ETG Profile specification in the right manner and as an early adaptation.
- Ensures access for all ETG members to related TSN documents for ETG profile review

ETG.1700 EtherCAT-TSN Communication Profile

Created by:

- EtherCAT matches perfectly well with TSN Streams –
 EtherCAT segments can be updated with one single EtherCAT frame
- TSN offers real-time for heterogeneous networks
- EtherCAT offers fieldbus benefits
 - Highest performance
 - Complete semantic concept
 - Device profiles
 - Easy network configuration
 - Diagnosis

No replacement of each other - combine mutual benefits

If you have the choice, take both!

Stream adaptation uses **TSN** without modification!

Stream adaptation uses **EtherCAT** without modification!

-

- Whitepaper: EtherCAT and TSN Best Practices for Industrial Ethernet System Architectures <u>Download</u>
- Presentation: Layering with TSN and EtherCAT
 <u>Download</u>
- Specification: ETG.1700 EtherCAT TSN Communication Profile <u>Download</u>

www.ethercat.org

February 2018

Contact