## Embedded Success **dSPACE**

### Integration of EtherCAT in Advanced Test Systems – Solutions and Challenges

Dr. Frank Schütte, Andreas Tenge, Dr. László Juhász dSPACE GmbH, Paderborn



### Introduction



Actual developments in the mobile machinery and tractor industry are similar to the ones in the automotive area:

- The relevance of electronics and software is continuously increasing.
- Most innovation is based on the new developments or enhancements of electric and electronic systems, like:
  - New engine and transmission technologies (e.g.: hydrostatic drives with closed-loop control)
  - Advanced Driver Assistance Systems (ADAS)
  - Safety systems
  - Networking and Information Technology
  - Replacement of hydraulic system and mechanical drives with electrical ones

#### To cope with this trend:



- Parallel development and testing of the mechatronic and ECUs is required.
- Automated ECU tests are necessary.



The mentioned challenges are solved in the automotive industry by means of

#### Hardware-in-the-Loop-Simulation (HIL)

What is Hardware-in-the-Loop-Simulation?

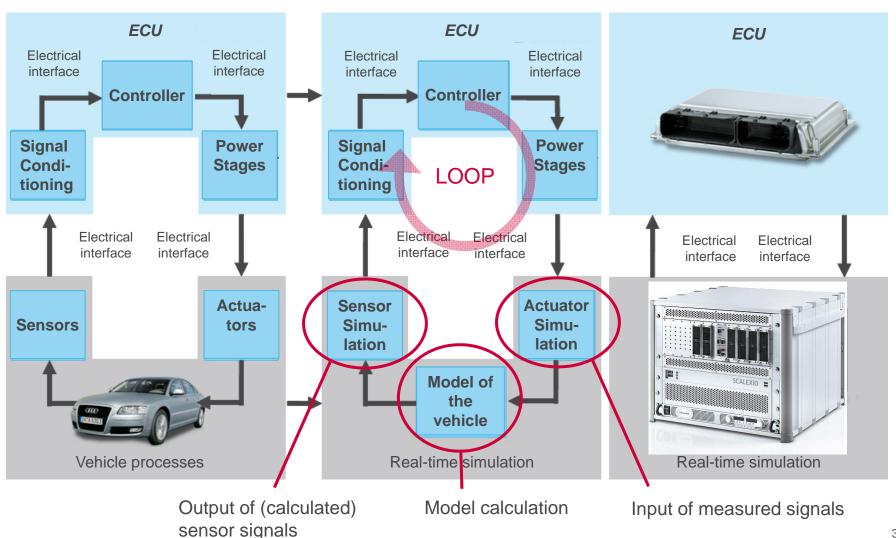
"Hardware-in-the-Loop-Simulation is a (test-)method in the product development cycle in which <u>one</u> or <u>several</u> real control components interact with real-time simulated components (dynamic models) instead of real ones."

Real component ("Hardware"):

Devices, machines, test benches, mechatronic systems,

often also: ECUs, control systems, electronic

Simulated components ("Models"):


Dynamic systems (real-time simulated models)

## Hardware-in-the-Loop-Simulation vs. Traditional Testing

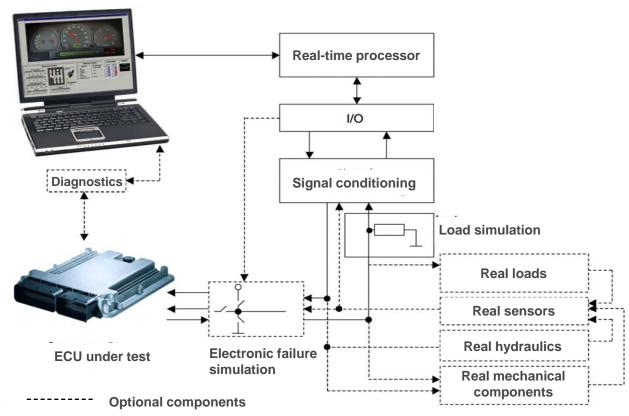
**Real vehicle** 



**HIL-simulation** 



3


## HIL Systems: Hardware-Components



# Hardware-Components for HIL simulation

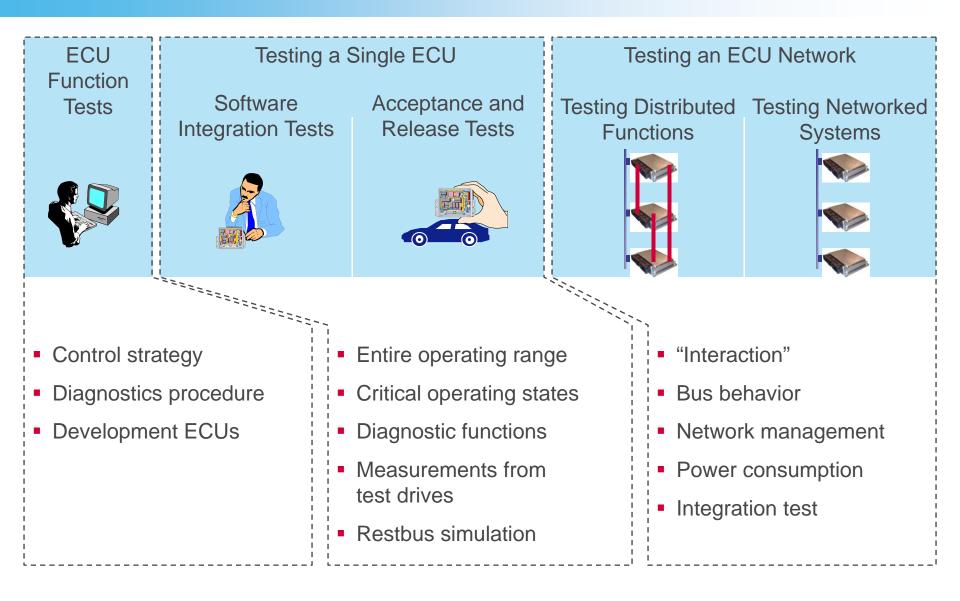
- User-PC
- Real-time processor
- I/O-boards and signal conditioning
- Bus systems
- Electric loads and load simulation
- Electric failure simulation
- Power supply for battery simulation
- Real components

GUI, experiment control, test automation




## HIL Systems: Software-Components

## **dSPACE**


#### **Software-Components for HIL Simulation**

- User-Software:
  - Simple I/O (Digital, PWM, A/D, D/A) implementation and configuration
  - Bus/Network-system implementation and configuration
  - Experiment software
  - Real-time animation
  - Test automation
- Real-time software
- Dynamic models
  - Combustion engine models
  - Environmental models
  - Electric components and electrical system



## **Different HIL Test Scenarios**





## **Testing of ECU-Networks**



#### Test of an ECU-network

- Test of all ECUs in an ECU network ("virtual vehicle")
- ECUs are communicating through different bus systems

#### Methods

- Check mechanisms (Message counters, checksums, toggle and parity bits)
- Generating messages independently of, or depending on the simulated environment
- <image>

HIL system for testing an ECU-network

- Error emulation/injection
  - Temporary replacement of model-related messages/signals by synthetic signals
  - Manipulation of signals on logical and/or electrical level
  - Manipulation of signal timing
  - Switching individual message(s) or complete transmission on/off

## **Integration Test System**

## **dSPACE**

#### **Testing Considerations**

- Network Performance and Bus Analysis
  - Communication implemented correctly by suppliers?
  - Do ECUs make sensor signals available to other ECUs fast enough?
  - Do gateways between the sub-networks work correctly?
  - Correct ECU behavior under high bus loads or in cases of bus error?
  - Does network management work correctly?
- Power Measurement Capability
- Test user-interface components
- Manual overrides and debugging capabilities
- Comprehensive Automated Testing





Machine Test Bed \$10x/hr. Weekly Iterations



Model based Virtual Lab



Hourly Iterations

### **Integration Testing**

## **dSPACE**

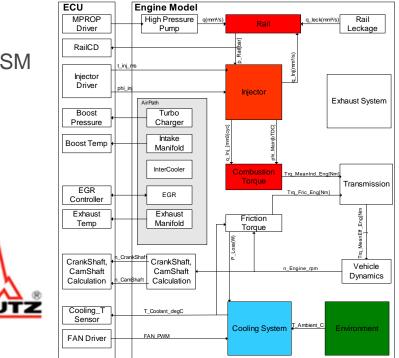
#### System Integration is the Key

- Need to Reduce Fuel Consumption to meet Tier4 EPA Regulations
- Mandates the need to have multiple ECUs working together
- New Challenges System Integration Testing
- Dynamic Testing of Interaction of Transmissions, Engines, and other devices

SAE Off-Highway Engineering Magazine – March 2009



"The CAN bus network is the key for connecting the pieces," Rick Hall, CNH Construction Equipment.




### **ECU Testing for Diesel Engine Variants**



- Deutz release tests for diesel engine ECUs
- HIL test system based on dSPACE Simulator and ASM Diesel Engine Simulation Package
- Fast variant handling (50) by dynamic models
- Automated testing via AutomationDesk





"With its flexible, fast configuration, the ASM Diesel Engine Model enables us to cover all our engine variants with a single model, and to switch back and forth between the variants very fast." (Mark Zimmermann, Deutz)

## Goals and Advantages of the HIL-Simulation

## Important Off-Road Customers

**Bobcat** 

CLAA5

11

#### Achievements through the HIL-simulation

- Increased productivity (higher coverage of potential test cases)
- Coping with increased complexity
- Reduction of development cost (less test benches and prototype vehicles)

#### **Advantages of HIL-tests**

- HIL-Tests can be reproduced and automated
- Certain tests are with a real-system not possible or too dangerous
- HIL-tests give the possibility to reproduce a certain error condition

   (diagnostic tests, emergency run programs, fallback programs)









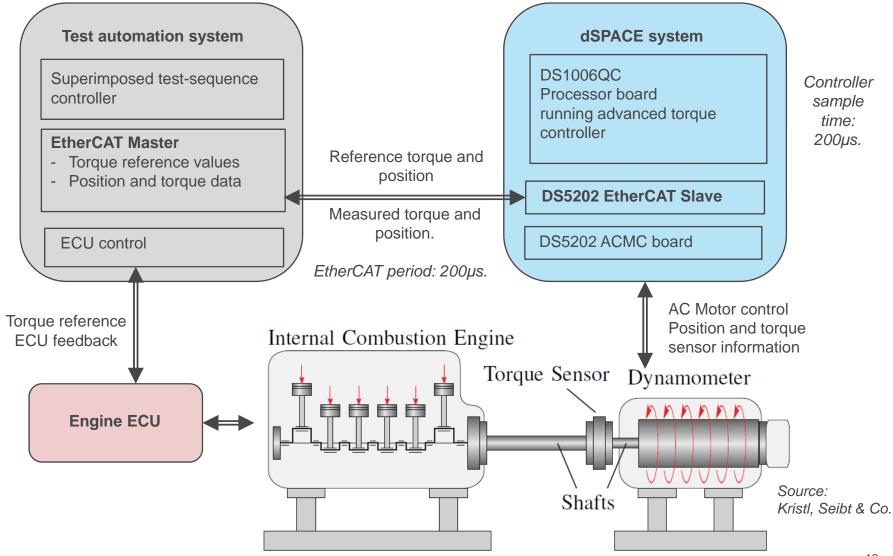




## dSPACE and EtherCAT

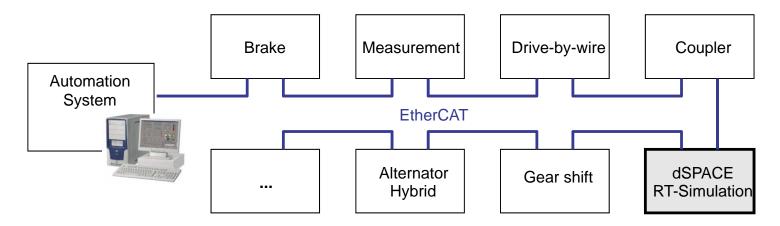


- Usage of **Beckhoff** FB1111-0140 as slave modules
  - 8 KB DPMEM for communication
  - 8 configurable Sync Managers
     → allows different cycle times




- New Simulator Generation SCALEXIO
  - Usage of Hilscher CifX/NetX PCI(x) SW-reconfigurable modules
  - Master and Slave




## **EtherCAT Test-Bench Integration (1)**





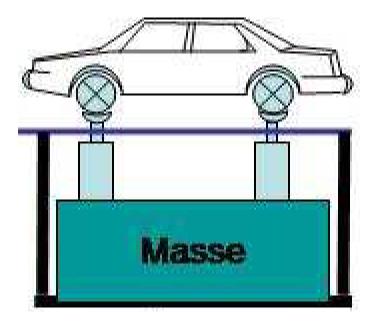
## **EtherCAT Test-Bench Integration (2)**



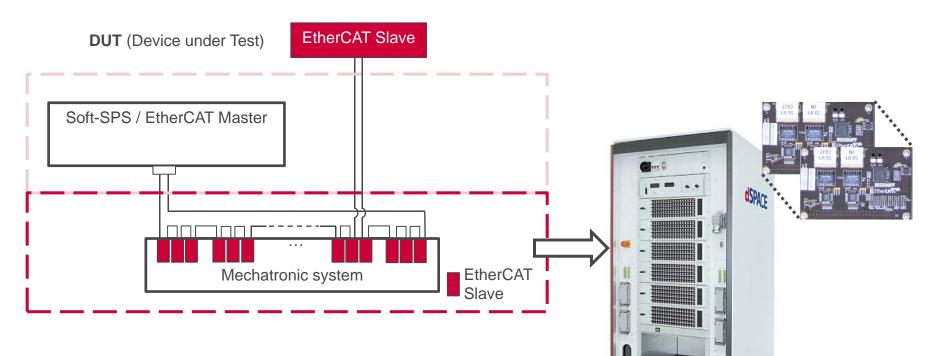


#### **Engine Test Bench**

- Usage of KPA EtherCAT Master included in Automation System
- dSPACE simulator connected as slave to EtherCAT network
- Usage of different tasks for sending and receiving
  - 200µs, 1ms and 10ms cycle



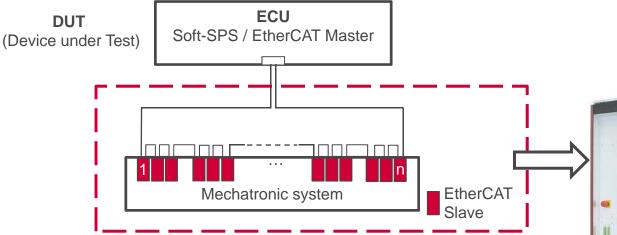

## **EtherCAT Test-Bench Integration (3)**


## **dSPACE**

#### **Vehicle Dynamics Test Bench**

- Excitement of street profiles to the car by means of hydraulic shakers
- Local measurement acquisition
- One processor board (and I/O) per axis
- Exchange of analog sensors and data transmission by EtherCAT
- dSPACE simulator connected as slave to the EtherCAT network
- One EtherCAT slave per axis
- Usage of TwinCAT as master
- Small cycles (200 µs) and many signals




## Use Case: Testing ECU with EtherCAT Slave



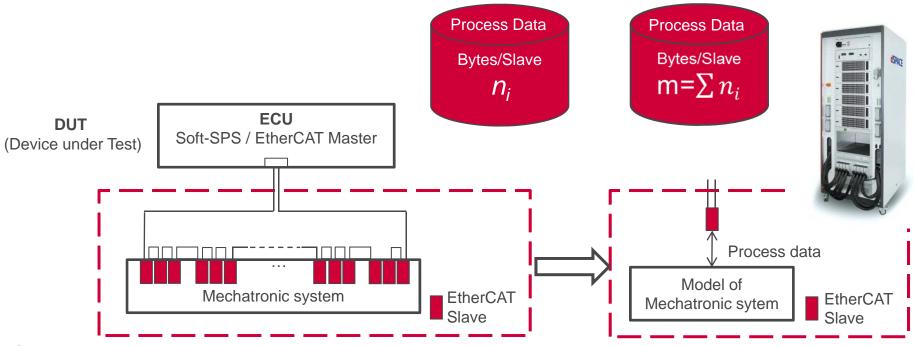
- Test of EtherCAT slave by means of restbus simulation
  - Simulation of not existing slaves by few flexible slaves
  - Master implementation has to be adjusted (application layer and process data remain the same)
  - Restbus simulation for several slaves also possible

**dSPACE** 

## Use Case: Testing ECU with EtherCAT Master



- Test of Soft-SPS / EtherCAT master by means of restbus simulation
  - Includes simulation of the mechatronic system (Simulink model) and complete bus topology
  - Each slave of the real machine (about 300) has to be replaced by a slave in the simulator
  - There is no appropriate technological solution today!
     Would require kind of high flexible "Multi-Slave"




**dSPACE** 

## Use Case: Testing ECU with EtherCAT Master



Alternative: Simulation of complete process data by means of few flexible slaves



Consequences

- Master implementation has to be adjusted (application layer and process data remain the same)
   changes of DUT!
- No real network topology  $\rightarrow$  differing roundtrip times and latencies
- No hardware layer specific tests possible (e.g. breakdown of a specific slave)



#### Summary

- The relevance of electronics and software in mobile machinery is continuously increasing. Most innovation is based on the new developments or enhancements of electric and electronic systems.
- Hardware-in-the-Loop testing is the key technology, which is able to cope with the increased test requirements.
- Use cases for EtherCAT in advanced test systems
  - ✓ Test bench integration
  - ✓ Restbus simulation for EtherCAT slave(s)
  - ✗ Restbus simulation for EtherCAT master
  - ✓ Restbus simulation for EtherCAT master without real topology
- Particularly, the requirement for genuine emulation of a large number of EtherCAT slaves with one physical unit is one of not yet solved challenges.