How to implement an EtherCAT Slave Device

Martin Rostan
Agenda

1. EtherCAT Slave Structure Overview
2. First Steps: Device Definition
3. Hardware Design
4. Software Development
5. Conformance Testing
6. Common Issues – and how to avoid them
EtherCAT Slave Structure Overview

EtherCAT Slave Device

- Application / Host Controller
- EtherCAT Slave Controller
- Network Interface Hardware / Physical Layer

Device Description File

XML

EtherCAT Master / Configuration Tool

EtherCAT Slave Structure

- Device Definition
- Integrated or Interface Device
- Hardware Selection
- Device Profile
- Process Data
- Synchronization

HW Design

SW Development

Conformance Testing

Common Issues – and how to avoid them

February 2011
First: Device Definition

Define / Select:

1. Fully integrated Design or Interfacing Device
2. Interface Hardware
3. Device Profile
4. Parameter + Process Data
5. Synchronization and Time Stamping Requirements
Fully integrated or Interfacing Device?

Fully integrated

PRO:
- Lower hardware costs
- Most flexible solution
- Full control of all features

CON:
- Higher development costs

Interfacing device

PRO:
- Lower development costs
- Time to market
- Less network know-how required

CON:
- Higher hardware costs
- Form factor restrictions
Interface Hardware?

Fully integrated Design*:

- Host / Application Controller
- EtherCAT Slave Controller
- Physical Layer, Network Interface

* Interfacing Device Hardware Selection: no generic rules due to the diverse architectures of the various solutions
EtherCAT Host Controller?

- Simple (I/O) Devices do not require a µC at all
- Tasks of Host µC in more complex devices:
 - Process data – Exchange with the Application
 - Object Dictionary Handling
 - Handling of Application Parameter (Communication Parameter are handled by ESC)
 - TCP/IP Stack Handling – if required

- Host Controller Performance is determined by Device Application, not by EtherCAT
 → In many cases an 8bit µC is sufficient
EtherCAT Host Controller Interface?

The host controller may determine the interface to internal DPRAM of the EtherCAT Slave Controller.

Example: Beckhoff ASICs:
- **8/16 Bit µC Interface**
 - Demultiplexed
 - Intel Signal Types
 - Polarity configurable (BUSY, INT)
 - Typical µC: ARM, Infineon 80C16x, Hitachi SH1, ST10, TI TMS320 Series, …

- **Serial – Interface (SPI)**
 - Up to 10 MBaud
 - µC is SPI Master
 - Typical µC: Microchip PIC, DSPic, Intel 80C51, Atmel AVR…
EtherCAT Slave Controller?

ASIC

PRO:
- Low costs, small
- netx: Multiple networks supported

CON:
- Less flexible

FPGA

PRO:
- Most flexible: FPGA can integrate application functionality as well
- Low costs especially if FPGA is used anyhow
- Can support multiple Ethernet flavors

CON:
- Requires VHDL programming know-how
Selection Criteria EtherCAT Slave Controller

- No (and type) of Ports
- Typical: 2-port devices, for line and ring topologies
- 3+4-port devices cater for topology options

1-port only for devices powered by Power over EtherCAT
Selection Criteria EtherCAT Slave Controller

- Size of DPRAM and no. of Sync Manager entities

Parameter Data (acyclic)
- Register
- Mailbox Out
- Mailbox In

Process Data (cyclic)
- Output Data
- Input Data

ESC DPRAM
- Sync Manager 0
- Sync Manager 1
- Sync Manager 2
- Sync Manager 3

Buffer 1
Buffer 2
Buffer 3

Register
4KByte

e.g. 1..60 KByte

© EtherCAT Technology Group February 2011
Selection Criteria EtherCAT Slave Controller

- No. of Fieldbus Memory Management Units (FMMU)
 - FMMU: copies process data from EtherCAT datagram to DPRAM – and ensures data consistency
 - Mechanism for further optimization of resources (bandwidth, CPU power)
 - Typical requirement: minimum of 3.

<table>
<thead>
<tr>
<th>FMMU Number</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output Data</td>
</tr>
<tr>
<td>2</td>
<td>Input Data</td>
</tr>
<tr>
<td>3</td>
<td>Status check of Mailbox Response</td>
</tr>
</tbody>
</table>
Selection Criteria EtherCAT Slave Controller

- Price?
- Local Support?
- Housing?
- Size?
- Integrated PHYs?
 - Hilscher netX
- Integrated CPU?
 - Hilscher netX
 - FPGA solutions (optional: softcore)
- Need to disclose quantities?
 - FPGA solutions (buy out licenses available)
- Multi Protocol Support
 - Hilscher netX
 - FPGA solutions
Physical Layer, Network Interface?

EtherCAT Physical Layer is 100BASE-TX or –FX*

EtherCAT PHYs have to support
- Full Duplex Communication
- Auto-Negotiation, MDI/MDI-X auto-crossover
- MII with MII management interface
- PHY link loss reaction time (link loss to link signal/LED output change) shorter than 15µs (for short redundancy switchover)

For further details see the ESC Datasheets or the corresponding PHY Selection Guide

* + LVDS for modular devices, supported by Beckhoff ASICs only
Device Profile?

- Which device profile shall be supported?
 - Drive: both CiA402 (the CANopen drive profile, IEC 61800-7-201) and the Sercos-Drive-Profile (IEC 61800-7-204) are mapped on EtherCAT

- If the device can be described as hardware modules or as logical modules:
 - Modular Device Description recommended
 - Modular Device Profile (ETG.5001)
Parameter + Process Data?

Device Profile determines Parameters and Process Data setup

But: decision if the Process Data Layout shall be:

→ **Fixed**: cannot be changed by user.
 Example: simple I/O device.

→ **Selectable**: user can select between several predefined process data layouts.
 Example: drive where process data layout depends on the selected drive operation mode

→ **Determined by module combination (Dynamic)**: determined at device bootup by actual hardware modules;
 Example: bus coupler with modular I/O.
What level of Synchronization is required?

1. Freerun:
 local timer controls application, no synchronization with network

2. Synchronized with network cycle:
 local application triggered by reception of process data (“SM-event”). Jitter mainly depends on master accuracy.

3. Synchronized by Distributed Clocks:
 local application triggered by high precision and fully synchronized hardware interrupt generated by local clock; accuracy in the order of nanoseconds
Hardware Design

EtherCAT Slave Structure
- Integrated or Interface Device
- Hardware Selection
- Device Profile
- Process Data
- Synchronization

HW Design

SW Development

Conformance Testing

Common Issues – and how to avoid them

Application / Host Controller
According to the Application Requirements

EtherCAT Slave Controller
According to the ESC Selection Criteria

Network Interface / Physical Layer
Standard Ethernet Interface,
Requirements according to PHY Selection Guide / ESC Data Sheet
Software Development

Typical Software-Structure:

- Applications-Program/Firmware
- Communication-Stack with the following elements:
 - EtherCAT State Machine
 - Verification of the configuration settings done by master
 - Handling of synchronization + configuration errors
 - Mailbox-Protocol Handling
 - Most common protocol: CoE
 - Error Handling (e.g. Parameter cannot be read or written)
 - Access to ESC memory (DPRAM)
 - Synchronization

The listed functionality is supported by most available stacks, such as

- Beckhoff Slave Sample Code
- Hilscher EtherCAT Slave Stack
Device Description: ESI File

- Each EtherCAT Slave device is described by an „EtherCAT Slave Information“ (ESI) File in XML Format
- The ESI Format is defined in the ETG.2000 spec
- Of course there are also a schemas, example files etc. on the EtherCAT website
- The ESI also supports the description of modular devices
Conformance Testing

• The EtherCAT Conformance Test Tool (CTT) is helpful throughout the implementation – and afterwards
• Having the CTT and testing with it is a requirement
• Recommended Procedure:
 – If not yet ETG member: Join ETG (free of charge)
 – Obtain EtherCAT Vendor ID (free of charge)
 – Subscribe to Conformance Test Tool
 – Conformance Test Record (ETG.7000-2) is Test Guideline
 • Test with CTT
 • Test of the LED behavior (ETG.1300)
 • Marking and Trademark Hints (ETG.9001)
 • Further tests

• Test in official EtherCAT Test Center (and Certification) is optional, but recommended
Common Issues – and how to avoid them!

The 5 „Killer“ for passing the conformance test:

1. **Logo:**
 Neither on the device nor in the documentation the EtherCAT logo is shown

2. **Trademark:**
 Trademark hint is missing in the documentation

3. **Indicator and Port Marking:**
 Marking is missing or misleading

4. **Watchdog Behavior:**
 If sending of process data is stopped the device does not show the required behavior

5. **DC-Signal Monitoring:**
 If the interrupt for the synchronization is disabled the device does not show the required behavior